@ SALTSTACK

Salt Documentation
Release 2015.8.8

SaltStack, Inc.

May 09, 2016

Contents

1

2

3

4

Introduction to Salt

1.1 The 30 second SUMMATIY v v v vt it ettt e e et e e e e e e e
1.2 SImplicity o e e
1.3 Parallel execution e
1.4 Building on proven technology
1.5 Python clientinterface
1.6 Fast, flexible, scalable
1.7 0pen e e
1.8 SaltCommunity o .o e e
1.9 Mailing List e
110 IRC .. e e e
1.11 Followon GitHub e
112 Blogs . . o o e e
1.13 Example Salt States L
1.14 Followonohloh o
1.15 Other community links
1.16 HacktheSource.
Installation

21 QuickInstall. e
2.2 Platform-specific Installation Instructions L L
23 Dependencies e
24 Optional Dependencies i e
2.5 Upgrading Salt
Tutorials

3.1 Introduction L
3.2 Basics ... e
33 States e e e e
3.4 Advanced TOPICS Lo e
3.5 Salt VIrto e
3.6 LXC o
3.7 ESXiProxy Minion
3.8 UsingSaltatscale. e e
Targeting Minions

4.1 Matching theminion id
4.2 Grains v e e e e e

29
30
30

31
31
33
43
71
137
142
142
149

153
153
154

9

43 Targeting with Pillar L
4.4 Subnet/IP Address Matching L
45 Compound matchers L
4.6 NOe GroUPS . . « v v v v e e e e e e
4.7 BatchSize e
48 SECORANGe o o o it e e e e e
Storing Static Data in the Pillar
5.1 Declaring the Master Pillar e
5.2 Pillar namespace flattened
5.3 Pillar Namespace Merges. o i
54 Including Other Pillars L o e
55 Viewing Minjon Pillar Lo
5.6 Pillar “Tget" Function L e e
5.7 Refreshing Pillar Data e
5.8 SetPillar Data at the Command Line
59 Master ConfigInPillar L
510 Minion ConfiginPillar L L
5.11 Master Provided Pillar Error e
Reactor System
6.1 EventSystem
6.2 Mapping Events to Reactor SLSFiles e
6.3 Fireanevent
6.4 Knowing what eventisbeing fired L
6.5 Debuggingthe Reactor e
6.6 Understanding the Structure of Reactor Formulas
6.7 A Complete Example
6.8 Syncing Custom Types on Minion Start
The Salt Mine
7.1 Mine vs Grains
7.2 MineFunctions
73 Minelnterval e
74 Minein Salt-SSH L
7.5 Minions Targeting with Mine L
7.6 Exampleo e e
External Authentication System
8.1 Access Control System
8.2 TOKens e
83 OpenLDAP and similar systems L
8.4 Active Directory e
Access Control System

10 Job Management
10.1 The Minion proc System e e
10.2 Functions in the saltutil Module L
10.3 ThejobsRunner. o e
10.4 Scheduling Jobs
105 States e
10.6 Highstates L
10.7 Runmers e e e e
10.8 Scheduler With Returner e

165
165
167
167
168
168
169
169
169
170
170
170

171
171
171
172
172
173
173
176
177

179
179
179
180
180
180
181

183
183
184
185
186

189

11

12

13

14

15

16

17

18

19

20

Managing the Job Cache 201

11.1 Default Job Cache e 201
11.2 Additional Job Cache Options 201
Storing Job Results in an External System 203
12.1 External Job Cache - Minion-Side Returner. i 203
12.2 Master Job Cache - Master-Side Returner 204
12.3 Configure an External or Master JobCache 204
Storing Data in Other Databases 207
13.1 SDB Configuration 207
13.2 SDBURIS e e e 207
13.3 Getting and Setting SDB Values 208
134 Using SDBURIsinFiles e 208
13.5 Writing SDB Modules o e 209
Salt Event System 211
14.1 Eventtypes i o e e e 211
14.2 Listening for Events L 215
143 TFiringEvents L 216
14.4 Firing Events from Python L L 217
Beacons 219
15.1 Configuring Beacons L 219
15.2 Beacon Example 220
15.3 Writing Beacon Plugins 222
Salt Engines 225
16.1 Configuration e e e 225
16.2 Writingan Engine L e e e 225
Running Custom Master Processes 227
17.1 Example Configuration L 227
17.2 Example Process Class e e 227
High Availability Features in Salt 229
18.1 Multimaster L e 229
18.2 Multimaster with Failover 229
183 Syndico e 230
18.4 Syndic with Multimaster L 230
Salt Syndic 231
19.1 Configuring the Syndic. L 231
19.2 Configuring the Syndic with Multimaster 232
193 Runningthe Syndic L 232
194 Topology . . . o o i e 233
19.5 Syndicwait e e 233
19.6 Syndicconfig options e 233
Salt Proxy Minion 235
20.1 New in 2015.8.2 L L e e e 235
20.2 Newin 2015.8 o oo it e e 236
20.3 Getting Started 236
20.4 The __proxyenabled _directive e 242
20.5 SSHProxymodules e 244

21 Salt Package Manager
21.1 Building Packages e
21.2 Building Repositories e e
21.3 Configuring Remote Repositories L
214 Installing Packages
215 Pillars . . .o e
21.6 Loader Modules
21.7 Removing Packages.
21.8 Technical Information e
21.9 SPM-Specific Loader Modules L e
21.10 SPM Configuration L e e
21.11 Typesof Packages o
22 Salt Transport
221 PubChannel. e
222 ReqChannel. o e
23 Windows Software Repository
23.1 Configuration L e e
23.2 Install Windows Software L
23.3 Uninstall Windows Software L
23.4 Repository Location e
23.5 Maintaining Windows Repo Definitions in Git Repositories
23.6 Creating a Package Definition SLSFile L
23.7 Managing Windows Software on a Standalone Windows Minion
23.8 Config Options for Minions 2015.8.0 and Later
23.9 Config Options for Minions Before 2015.8.0
23.10 Changesin Version 2015.8.0 it e e e
23.11 Troubleshooting e
24 Windows-specific Behaviour
24.1 Group parameter forfiles L L
24.2 Dealing with case-insensitive but case-preservingnames L L.
24.3 Dealing with various username forms L
244 Specifying the None groupot e
245 Symboliclink loops L e
24.6 Modifying security properties (ACLs)onfiles L L
25 Salt Cloud
25.1 Configuration L
25.2 Configuration Inheritance L L e
25.3 QuickStart
254 Using Salt Cloud
25.5 Core Configuration e e
25.6 Windows Configuration
25.7 Cloud Provider Specifics e
25.8 Miscellaneous Options L e
25.9 Troubleshooting Steps L
25.10 Extending Salt Cloud e
25.11 Using Salt Cloud from Salt
25.12 Feature Comparison o i e e e
25.13 Tutorials L e
26 netapi modules

26.1 Writing netapimodules L

249
249
251
251
251
252
252
252
252
252
253
254

259
259
259

265
265
266
266
267
267
268
272
272
272
272
275

277
277
277
278
278
278
278

279
279
279
280
280
289
299
302
394
399
401
410
415
418

425

27

28

29

30

31

32

26.2 Introduction tonetapimodules 426
26.3 Clientinterfaces L e 426
Salt Virt 429
27.1 Salt Virt Tutorial 429
27.2 TheSalt Virt Runner e 429
27.3 BasedonLiveState Data L e 430
274 Deploy from Network or Disk o e 430
Understanding YAML 433
28.1 RuleOne: Indentation e 433
282 RuleTwo: Colons e 433
28.3 Rule Three: Dashes e 434
28.4 Learning More e e 434
Master Tops System 435
Salt SSH 437
30.1 Getting Started L 437
30.2 Salt SSHRoSter o e 437
30.3 Deploysshkeyforsalt-ssh. 438
304 Calling Salt SSH L o e 438
30.5 States ViaSalt SSH o L 439
30.6 Targeting with Salt SSH L 439
30.7 Configuring Salt SSH e e 439
30.8 Running Salt SSH as non-root user e 439
30.9 Define CLI Options with Saltfile 440
30.10 Debugging salt-ssh L 440
Salt Rosters 441
31.1 How Rosters Work e 441
Reference 443
32.1 Fulllist of builtinauthmodules 443
32.2 Command Line Reference 449
323 Client ACL SYStEIM v o v vttt e e e e e e e 472
324 Pythonclient APL e 473
32,5 Fulllistof Salt Cloudmodules 483
32.6 Configuration file examples L 560
32.7 Configuring Salt L 589
32.8 Configuring the Salt Master e 592
32.9 Configuring the Salt Minion e 632
32.10 Running the Salt Master/Minion as an Unprivileged User 650
32.11 LoggIng . . . o o o o e e e e e e 650
32.12 External Logging Handlers. 653
32.13 SaltFile Server o e 656
32.14 Full list of builtin fileserver modules L L 662
32.15 Full list of builtin grains modules L L L oL 669
32.16 Saltcodeandinternals L 673
32.17 Full list of builtin execution modules L L 677
32.18 Fulllist of netapimodules L 1524
32.19 Fulllist of builtin output modules L 1550
32.20 Peer Communication o e 1557
3221 Pillars e 1559
32.22 Fulllist of builtin pillar modules 1559

33

32.23 Full list of builtin proxy modules L 1587
32.24 Rendererso e e 1596
32.25 Returners e 1620
32.26 Full list of builtin roster modules 1659
32.27 SaltRunners 1662
32.28 State Enforcement L e 1694
32.29 Fulllist of builtin statemodules L 1742
32.30 Execution Modules L 2043
3231 Master Tops o o o 2051
32.32 Full list of builtin master tops modules L 2051
32.33 Full list of builtin wheel modules 2054
32.34 Fulllist of builtin beaconmodules L L 2057
32.35 Full list of builtin engine modules L e 2063
32.36 Fulllist of builtin sdbmodules e 2064
32.37 Full list of builtin serializers e 2067
32.38 Fulllistof builtin queues e 2070
Salt Best Practices 2073
33.1 Generalrules L 2073
33.2 Structuring Statesand Formulas L 2073
33.3 Structuring Pillar Files Lo 2074
33.4 Variable Flexibility 2075
33.5 Modularity Within States L 2076
33.6 Storing Secure Data. e 2079
34 Hardening Salt 2083
34.1 General hardening tips L L L 2083
34.2 Salthardening tips L e 2083
35 Troubleshooting 2085
35.1 Troubleshooting the Salt Master 2085
35.2 Troubleshooting the Salt Minion e 2089
35.3 Running in the Foreground 2091
35.4 What Ports do the Master and Minion Need Open? 2091
35.5 Usingsalt-call 2091
35.6 Toomanyopenfiles 2092
35.7 Salt Master Stops Responding L e 2092
35.8 Saltand SELINUX o e e e 2093
359 Red Hat Enterprise LINUX 5 o 0o e e e 2093
35.10 Common YAML Gotchas o i i e 2093
35.11 Live Python Debug Output 2098
35.12 Salt 0.16.x minions cannot communicate with a 0.17.x master 2098
35.13 Debugging the Master and Minion L e 2099
36 Developing Salt 2101
36.1 OVEIVIEW . . . v ittt e e et e e e e e e e e e e e e e e e 2101
36.2 SaltClient e 2101
36.3 Salt Master e 2101
36.4 Salt Minion e 2103
36.5 ANote on ClearFuncs vs. AESFuncs 2104
36.6 Contributing e 2105
36.7 Deprecating Code e e e 2110
36.8 Dunder Dictionaries e e 2111
36.9 External Pillars 2112
36.10 Installing Salt for development L 2115

vi

36.11 GitHub Labels and Milestones L e 2120
36.12 Logging Internals e e 2124
36.13 Modular Systems e e 2124
36.14 Package Providers 2127
36.15 Reporting Bugs 2131
36.16 Community Projects That Use Salt 2132
36.17 Salt Topology o o i e 2132
36.18 Translating Documentation e e 2133
36.19 Developing Salt Tutorial 2134
36.20 Salt's TestSuite L e e e 2137
36.21 Taet L e 2142
36.22 SaltStack Git Policy o 2145
36.23 Salt Conventions e 2147
37 Release notes 2181
37.1 LatestBranch Release e 2181
37.2 PreviousReleases 2181
38 Salt Based Projects 2485
38.1 SaltSandbox. 2485
39 Security disclosure policy 2487
39.1 Security response procedure Lol o e e e e e e 2488
39.2 Receiving security announcementsl e e e e 2488
40 Frequently Asked Questions 2489
40.1 IsSaltopen-core? e e 2489
40.2 Ithink I found a bug! What shouldIdo? 2490
40.3 What ports should I open on my firewall? L. 2490
40.4 I'm seeing weird behavior (including but not limited to packages not installing their users properly) 2490
40.5 My script runs every time [run a state.apply. Why? Lo oo 2490
40.6 When I run test.ping, why don't the Minions that aren't responding return anything? Returning
Falsewouldbehelpful. 2490
40.7 How does Salt determine the Minion'sid? 2491
40.8 I'm trying to manage packages/services but I get an error saying that the state is not available. Why? 2491
40.9 Why aren't my custom modules/states/etc. available on my Minions? 2491
40.10 Module X isn't available, even though the shell command it uses is installed. Why? 2492
40.11 Can I run different versions of Salt on my Master and Minion? 2492
40.12 Does Salt support backing up managed files? Lo oo 2492
40.13 Is it possible to deploy a file to a specific minion, without other minions having access to it? 2492
40.14 What is the best way to restart a Salt daemon using Salt? 2493
40.15 Salting the Salt Master e 2494
40.16 Is Targeting using Grain Data Secure? 2494
41 Glossary 2495
Salt Module Index 2499
Index 2507

vii

CHAPTER 1

Introduction to Salt

We’re not just talking about NaCl.

1.1 The 30 second summary

Salt is:

- a configuration management system, capable of maintaining remote nodes in defined states (for example,
ensuring that specific packages are installed and specific services are running)

« a distributed remote execution system used to execute commands and query data on remote nodes, either
individually or by arbitrary selection criteria

It was developed in order to bring the best solutions found in the world of remote execution together and make them
better, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

1.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. The architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. The topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with little to no modification, Salt can be fine tuned to meet specific needs.

1.3 Parallel execution

The core functions of Salt:
« enable commands to remote systems to be called in parallel rather than serially
« use a secure and encrypted protocol
« use the smallest and fastest network payloads possible
« provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.

Salt Documentation, Release 2015.8.8

1.4 Building on proven technology

Salt takes advantage of a number of technologies and techniques. The networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

1.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be written as plain Python modules. The data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

1.6 Fast, flexible, scalable

The result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. The Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

1.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

1.8 Salt Community

Join the Salt!
There are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

1.9 Mailing List

Join the salt-users mailing list. It is the best place to ask questions about Salt and see whats going on with Salt
development! The Salt mailing list is hosted by Google Groups. It is open to new members.

https://groups.google.com/forum/#!forum/salt-users
There is also a low-traffic list used to announce new releases called salt-announce

https://groups.google.com/forum/#!forum/salt-announce

2 Chapter 1. Introduction to Salt

http://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-announce
https://groups.google.com/forum/#!forum/salt-announce

Salt Documentation, Release 2015.8.8

1.10 IRC

The #salt IRC channel is hosted on the popular Freenode network. You can use the Freenode webchat client right
from your browser.

Logs of the IRC channel activity are being collected courtesy of Moritz Lenz.

If you wish to discuss the development of Salt itself join us in #salt-devel.

1.11 Follow on GitHub

The Salt code is developed via GitHub. Follow Salt for constant updates on what is happening in Salt development:

https://github.com/saltstack/salt

1.12 Blogs

SaltStack Inc. keeps a blog with recent news and advancements:
http://www.saltstack.com/blog/
Thomas Hatch also shares news and thoughts on Salt and related projects in his personal blog The Red45:

http://red45.wordpress.com/

1.13 Example Salt States

The official salt-states repository is: https://github.com/saltstack/salt-states
A few examples of salt states from the community:

« https://github.com/blast-hardcheese/blast-salt-states

https://github.com/kevingranade/kevingranade-salt-state

https://github.com/mattmcclean/salt-openstack/tree/master/salt

https://github.com/rentalita/ubuntu-setup/

https://github.com/brutasse/states

https://github.com/bclermont/states

https://github.com/pcrews/salt-data

1.14 Follow on ohloh

https://www.ohloh.net/p/salt

1.10. IRC 3

http://freenode.net/irc_servers.shtml
http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83
http://irclog.perlgeek.de/salt/
https://github.com/saltstack/salt
http://www.saltstack.com/blog/
http://www.saltstack.com/blog/
http://red45.wordpress.com/
http://red45.wordpress.com/
https://github.com/saltstack/salt-states
https://github.com/blast-hardcheese/blast-salt-states
https://github.com/kevingranade/kevingranade-salt-state
https://github.com/mattmcclean/salt-openstack/tree/master/salt
https://github.com/rentalita/ubuntu-setup/
https://github.com/brutasse/states
https://github.com/bclermont/states
https://github.com/pcrews/salt-data
https://www.ohloh.net/p/salt

Salt Documentation, Release 2015.8.8

1.15 Other community links

Salt Stack Inc.
Subreddit

« Google+
« YouTube
« Facebook

o Twitter

Wikipedia page

1.16 Hack the Source

If you want to get involved with the development of source code or the documentation efforts, please review the
hacking section!

4 Chapter 1. Introduction to Salt

http://www.saltstack.com
http://www.reddit.com/r/saltstack
https://plus.google.com/114449193225626631691/posts
http://www.youtube.com/user/SaltStack
https://www.facebook.com/SaltStack
https://twitter.com/SaltStackInc
http://en.wikipedia.org/wiki/Salt_(software)

CHAPTER 2

Installation

See also:

Installing Salt for development and contributing to the project.

2.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt Bootstrap.

2.2 Platform-specific Installation Instructions

These guides go into detail how to install Salt on a given platform.

2.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

‘pacman -S salt-zmq

To install Salt stable releases using the RAET protocol, use the following:

’pacman -S salt-raet

Note: transports

Unlike other linux distributions, please be aware that Arch Linux's package manager pacman defaults to RAET as
the Salt transport. If you want to use ZeroMQ instead, make sure to enter the associated number for the salt-zmq
repository when prompted.

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2015.8.8

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt

If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct1 as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2.2.2 Debian GNU/Linux / Raspbian
Debian GNU/Linux distribution and some devariatives such as Raspbian already have included Salt packages to

their repositories. However, current stable release codenamed " “Jessie" contains old outdated Salt release. It is
recommended to use SaltStack repository for Debian as described below.

Installation from official Debian and Raspbian repositories is described here.

Installation from the Official SaltStack Repository

Packages for Debian 8 (Jessie) and Debian 7 (Wheezy) are available in the Official SaltStack repository.
Instructions are at http://repo.saltstack.com/#debian.

Installation from the Community-Maintained Repository

The SaltStack community maintains a Debian repository at debian.saltstack.com. Packages for Debian Old Stable,
Stable, and Unstable (Wheezy, Jessie, and Sid) for Salt 0.16 and later are published in this repository.

6 Chapter 2. Installation

https://aur.archlinux.org/packages.php?ID=5863
http://repo.saltstack.com/#debian

Salt Documentation, Release 2015.8.8

Note: Packages in this repository are community built, and it can take a little while until the latest SaltStack release
is available in this repository.

Jessie (Stable)

For Jessie, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

’deb http://debian.saltstack.com/debian jessie-saltstack main

Wheezy (Old Stable)

For Wheezy, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

‘deb http://debian.saltstack.com/debian wheezy-saltstack main

Squeeze (Old Old Stable)

For Squeeze, you will need to enable the Debian backports repository as well as the debian.saltstack.com repository.
To do so, add the following to /etc/apt/sources.listorafilein /etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian squeeze-saltstack main
deb http://backports.debian.org/debian-backports squeeze-backports main

Stretch (Testing)

For Stretch, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

‘deb http://debian.saltstack.com/debian stretch-saltstack main

Sid (Unstable)

For Sid, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

‘deb http://debian.saltstack.com/debian unstable main

Import the repository key

You will need to import the key used for signing.

wget -q -0- "http://debian.saltstack.com/debian-salt-team-joehealy.gpg.key" | apt-key a(#d -

Note: You can optionally verify the key integrity with sha512sum using the public key signature shown here. E.g:

2.2. Platform-specific Installation Instructions 7

Salt Documentation, Release 2015.8.8

echo "b702969447l40d555363le9701bel3callCCOa7ed5fe2b30acb8491567560ee62f834772b5095d73541fcecb2384a5c.'

Update the package database

apt-get update

Installation from the Debian / Raspbian Official Repository
Stretch (Testing) and Sid (Unstable) distributions are already contain mostly up-to-date Salt packages built by Debian
Salt Team. You can install Salt components directly from Debian.

On Jessie (Stable) there is an option to install Salt minion from Stretch with python-tornado dependency from jessie-
backports repositories.

To install fresh release of Salt minion on Jessie:
1. Add jessie-backports and stretch repositories:

Debian:

echo 'deb http://httpredir.debian.org/debian jessie-backports main' >> /etc/apt/sources.list
echo 'deb http://httpredir.debian.org/debian stretch main' >> /etc/apt/sources.list

Raspbian:

echo 'deb http://archive.raspbian.org/raspbian/ stretch main' >> /etc/apt/sources.l‘ist

2. Make Jessie a default release:

echo 'APT::Default-Release "jessie";' > /etc/apt/apt.conf.d/10apt ‘

3. Install Salt dependencies:
Debian:

apt-get update
apt-get install python-zmq python-tornado/jessie-backports salt-common/stretch

Raspbian:

apt-get update
apt-get install python-zmq python-tornado/stretch salt-common/stretch

4. Install Salt minion package from Stretch:

apt-get install salt-minion/stretch

Install Packages
Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get install salt-api

. apt-get install salt-cloud

8 Chapter 2. Installation

Salt Documentation, Release 2015.8.8

apt-get install salt-master

apt-get install salt-minion
. apt-get install salt-ssh
. apt-get install salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

2.2.3 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum. Fedora will have more up to date versions of Salt than other members of the Red Hat family, which
makes it a great place to help improve Salt!

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum --enablerepo=updates-testing install salt-master
yum -—enablerepo=updates-testing install salt-minion

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using a package manager.
Installing from pip has a few additional requirements:

« Install the group "Development Tools', dnf groupinstall 'Development Tools'

2.2. Platform-specific Installation Instructions 9

http://fedoraproject.org/wiki/EPEL
https://pypi.python.org/pypi/salt

Salt Documentation, Release 2015.8.8

« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Post-installation tasks

Master

To have the Master start automatically at boot time:

‘systemctl enable salt-master.service ‘

To start the Master:

‘systemctl start salt-master.service ‘

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service ‘

To start the Minion:

’systemctl start salt-minion.service ‘

Now go to the Configuring Salt page.

2.2.4 FreeBSD

Salt was added to the FreeBSD ports tree Dec 26th, 2011 by Christer Edwards <christer.edwards@gmail.com>. It has
been tested on FreeBSD 7.4, 8.2, 9.0, 9.1, 10.0 and later releases.

Installation

Salt is available in binary package form from both the FreeBSD pkgng repository or directly from SaltStack. The
instructions below outline installation via both methods:

FreeBSD repo

The FreeBSD pkgng repository is preconfigured on systems 10.x and above. No configuration is needed to pull from
these repositories.

pkg install py27-salt

These packages are usually available within a few days of upstream release.

10 Chapter 2. Installation

mailto:christer.edwards@gmail.com

Salt Documentation, Release 2015.8.8

SaltStack repo

SaltStack also hosts internal binary builds of the Salt package, available from https://repo.saltstack.com/freebsd/. To
make use of this repository, add the following file to your system:

/usr/local/etc/pkg/repos/saltstack.conf:

saltstack: {
url: "https://repo.saltstack.com/freebsd/${ABI}/",
mirror_type: "http",
enabled: yes
priority: 10
}

You should now be able to install Salt from this new repository:

pkg install py27-salt

These packages are usually available earlier than upstream FreeBSD. Also available are release candidates and de-
velopment releases. Use these pre-release packages with caution.

Post-installation tasks

Master

Copy the sample configuration file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf:

sysrc salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

service salt_master start

Minion

Copy the sample configuration file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf:

sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt Minion as follows:

service salt_minion start

Now go to the Configuring Salt page.

2.2. Platform-specific Installation Instructions 11

https://repo.saltstack.com/freebsd/

Salt Documentation, Release 2015.8.8

2.2.5 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

2.2.6 OpenBSD

Salt was added to the OpenBSD ports tree on Aug 10th 2013. It has been tested on OpenBSD 5.5 onwards.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/salt
port:

devel/py-futures
devel/py-progressbar
net/py-msgpack
net/py-zmq
security/py-crypto
security/py-M2Crypto
textproc/py-MarkupSafe
textproc/py-yaml
www/py-jinja2
www/py-requests
www/py-tornado

Installation

To install Salt from the OpenBSD pkg repo, use the command:

pkg_add salt

Post-installation tasks

Master

To have the Master start automatically at boot time:

‘rcctl enable salt_master

To start the Master:

‘rcctl start salt_master

Minion

To have the Minion start automatically at boot time:

rcctl enable salt_minion

To start the Minion:

12 Chapter 2. Installation

Salt Documentation, Release 2015.8.8

rcctl start salt_minion

Now go to the Configuring Salt page.

2.2.7 OS X

Dependency Installation

It should be noted that Homebrew explicitly discourages the use of sudo:

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

So when using Homebrew, if you want support from the Homebrew community, install this way:

’brew install saltstack

When using MacPorts, install this way:

‘sudo port install salt

When only using the OS X system's pip, install this way:

‘sudo pip install salt

Salt-Master Customizations

To run salt-master on OS X, the root user maxfiles limit must be increased:

Note: On OS X 10.10 (Yosemite) and higher, maxfiles should not be adjusted. The default limits are sufficient in all
but the most extreme scenarios. Overriding these values with the setting below will cause system instability!

‘sudo launchctl limit maxfiles 4096 8192

And sudo add this configuration option to the /etc/salt/master file:

‘ max_open_files: 8192

Now the salt-master should run without errors:

‘sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

2.2.8 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Salt should work properly with all mainstream derivatives of Red Hat Enterprise Linux, including CentOS, Scientific
Linux, Oracle Linux, and Amazon Linux. Report any bugs or issues on the issue tracker.

2.2. Platform-specific Installation Instructions 13

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo
https://github.com/saltstack/salt/issues

Salt Documentation, Release 2015.8.8

Installation from the Official SaltStack Repository

Packages for Redhat, CentOS, and Amazon Linux are available in the SaltStack Repository.
» Red Hat / CentOS

« Amazon Linux

Note: As of 2015.8.0, EPEL repository is no longer required for installing on RHEL systems. SaltStack repository
provides all needed dependencies.

Warning: If installing on Red Hat Enterprise Linux 7 with disabled (not subscribed on) "RHEL Server Releases'
or 'RHEL Server Optional Channel' repositories, append CentOS 7 GPG key URL to SaltStack yum repository
configuration to install required base packages:

[saltstack-repo]

name=SaltStack repo for Red Hat Enterprise Linux S$releasever

baseurl=https://repo.saltstack.com/yum/redhat/$releasever/Sbasearch/latest

enabled=1

gpgcheck=1

gpgkey=https://repo.saltstack.com/yum/redhat/sreleasever/Sbasearch/latest/SALTSTACK-GRG-KEY.pub
https://repo.saltstack.com/yum/redhat/$releasever/$hasearch/latest/base/RPM-GP¢-KEY-Cent0S-7

Note: systemd and python-systemd are required by Salt, but are not installed by the Red Hat 7 @base
installation or by the Salt installation. These dependencies might need to be installed before Salt.

Installation from the Community-Maintained Repository

Beginning with version 0.9.4, Salt has been available in EPEL. For RHEL/CentOS 5, Fedora COPR is a single commu-
nity repository that provides Salt packages due to the removal from EPEL5.

Note: Packages in these repositories are built by community, and it can take a little while until the latest stable
SaltStack release become available.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Warning: Salt 2015.8 is currently not available in EPEL due to unsatisfied dependencies: python-crypto
2.6.1 or higher, and python-tornado version 4.2.1 or higher. These packages are not currently available in
EPEL for Red Hat Enterprise Linux 6 and 7.

Enabling EPEL If the EPEL repository is not installed on your system, you can download the RPM for
RHEL/CentOS 6 or for RHEL/CentOS 7 and install it using the following command:

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y.rpm with the appropriate filename.

14 Chapter 2. Installation

http://repo.saltstack.com/#rhel
http://repo.saltstack.com/#amzn
http://fedoraproject.org/wiki/EPEL
https://copr.fedorainfracloud.org/coprs/saltstack/salt-el5/
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html

Salt Documentation, Release 2015.8.8

Installing Stable Release Salt is packaged separately for the minion and the master. It is necessary to install only
the appropriate package for the role the machine will play. Typically, there will be one master and multiple minions.

« yum install salt-master
« yum install salt-minion
« yum install salt-ssh

« yum install salt-syndic

« yum install salt-cloud

Installing from epel-testing When a new Salt release is packaged, it is first admitted into the epel-
testing repository, before being moved to the stable EPEL repository.

To install from epel-testing, use the enablerepo argument for yum:

yum -—enablerepo=epel-testing install salt-minion

Installation Using pip
Since Salt is on PyP]l, it can be installed using pip, though most users prefer to install using RPM packages (which
can be installed from EPEL).
Installing from pip has a few additional requirements:
« Install the group "Development Tools', yum groupinstall 'Development Tools'
« Install the "zeromgq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

ZeroMQ 4
We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.5 and pyzmq 14.5.0 in the SaltStack
Repository as well as a separate zeromq4 COPR repository.

If this repository is added before Salt is installed, then installing either salt-master or salt-minion will
automatically pull in ZeroMQ 4.0.5, and additional steps to upgrade ZeroMQ and pyzmgq are unnecessary.

Warning: RHEL/CentOS 5 Users Using COPR repos on RHEL/CentOS 5 requires that the python-hashlib
package be installed. Not having it present will result in checksum errors because YUM will not be able to process
the SHA256 checksums used by COPR.

Note: For RHEL/CentOS 5 installations, if using the SaltStack repo or Fedora COPR to install Salt (as described
above), then it is not necessary to enable the zeromg4 COPR, because those repositories already include ZeroMQ 4.

2.2. Platform-specific Installation Instructions 15

https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL
http://copr.fedorainfracloud.org/coprs/saltstack/zeromq4/
http://copr.fedorainfracloud.org/coprs/saltstack/zeromq4/

Salt Documentation, Release 2015.8.8

Package Management
Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is

being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this
dependency.

Post-installation tasks
Master

To have the Master start automatically at boot time:

RHEL/CentOS 5 and 6

‘chkconf‘ig salt-master on

RHEL/CentOS 7

‘systemctl enable salt-master.service

To start the Master:
RHEL/CentOS 5 and 6

’service salt-master start

RHEL/CentOS 7

‘systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

RHEL/CentOS 5 and 6

‘chkconﬁ'g salt-minion on

RHEL/CentOS 7

’systemctl enable salt-minion.service

To start the Minion:
RHEL/CentOS 5 and 6

‘service salt-minion start

RHEL/CentOS 7

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

16 Chapter 2. Installation

http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2015.8.8

2.2.9 Solaris

Salt was added to the OpenCSW package repository in September of 2012 by Romeo Theriault <romeot@hawaii.edu>
at version 0.10.2 of Salt. It has mainly been tested on Solaris 10 (sparc), though it is built for and has been tested
minimally on Solaris 10 (x86), Solaris 9 (sparc/x86) and 11 (sparc/x86). (Please let me know if you're using it on these
platforms!) Most of the testing has also just focused on the minion, though it has verified that the master starts up
successfully on Solaris 10.

Comments and patches for better support on these platforms is very welcome.
As of version 0.10.4, Solaris is well supported under salt, with all of the following working well:
1. remote execution
2. grain detection
3. service control with SMF
4. “pkg' states with ‘pkgadd’ and “pkgutil' modules
5. cron modules/states
6. user and group modules/states
7. shadow password management modules/states

Salt is dependent on the following additional packages. These will automatically be installed as dependencies of the
py_sa'lt package:

« py_yaml

* py_pyzmq

» py_jinja2

« py_msgpack_python
e py_mZcrypto

e py_crypto
+ python

Installation

To install Salt from the OpenCSW package repository you first need to install pkgutil assuming you don't already
have it installed:

On Solaris 10:

pkgadd -d http://get.opencsw.org/now

On Solaris 9:

wget http://mirror.opencsw.org/opencsw/pkgutil.pkg
pkgadd -d pkgutil.pkg all

Once pkgutil is installed you'll need to edit it's config file /etc/opt/csw/pkgutil.conf to point it at the
unstable catalog:

- #mirror=http://mirror.opencsw.org/opencsw/testing
+ mirror=http://mirror.opencsw.org/opencsw/unstable

OK, time to install salt.

2.2. Platform-specific Installation Instructions 17

mailto:romeot@hawaii.edu
http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2015.8.8

Update the catalog

root> /opt/csw/bin/pkgutil -U

Install salt

root> /opt/csw/bin/pkgutil -i -y py_salt

Minion Configuration

Now that salt is installed you can find it's configuration files in /etc/opt/csw/salt/.

You'll want to edit the minion config file to set the name of your salt master server:

- #master: salt
+ master: your-salt-server

If you would like to use pkgutil as the default package provider for your Solaris minions, you can do so using the
providers option in the minion config file.

You can now start the salt minion like so:

On Solaris 10:

’svcadm enable salt-minion

On Solaris 9:

‘ /etc/init.d/salt-minion start

You should now be able to log onto the salt master and check to see if the salt-minion key is awaiting acceptance:

‘salt—key -1 un

Accept the key:

’salt—key -a <your-salt-minion>

Run a simple test against the minion:

’ salt '<your-salt-minion>' test.ping

Troubleshooting

Logs are in /var/log/salt

2.2.10 Ubuntu

Installation from the Official SaltStack Repository

Packages for Ubuntu 14 (Trusty) and Ubuntu 12 (Precise) are available in the SaltStack repository.

Instructions are at http://repo.saltstack.com/#ubuntu.

18 Chapter 2. Installation

http://www.opencsw.org/manual/for-administrators/getting-started.html
http://repo.saltstack.com/#ubuntu

Salt Documentation, Release 2015.8.8

Installation from the Community-Maintained Repository

Packages for Ubuntu are also published in the saltstack PPA. If you have the add-apt-repository utility, you
can add the repository and import the key in one step:

sudo add-apt-repository ppa:saltstack/salt

In addition to the main repository, there are secondary repositories for each individual major release. These reposi-
tories receive security and point releases but will not upgrade to any subsequent major release. There are currently
several available repos: salt16, salt17, salt2014-1, salt2014-7, salt2015-5. For example to follow 2015.5.x releases:

sudo add-apt-repository ppa:saltstack/salt2015-5

add-apt-repository: command not found?

The add-apt-repository command is not always present on Ubuntu systems. This can be fixed by installing
python-software-properties:

‘sudo apt-get install python-software-properties ‘

The following may be required as well:

‘sudo apt-get install software-properties-common ‘

Note that since Ubuntu 12.10 (Raring Ringtail), add-apt-repository is found in the software-properties-common
package, and is part of the base install. Thus, add—apt-repository should be able to be used out-of-the-box to
add the PPA.

Alternately, manually add the repository and import the PPA key with these commands:

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu “1lsb_release -sc’ main | sudo tee /etc/apt/s
wget -q -0- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&search=0x4759FA960E27CQA6" | sudo aj

After adding the repository, update the package management database:

sudo apt-get update ‘

Install Packages
Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get dinstall salt-api

. apt-get install salt-cloud

. apt-get install salt-master

. apt-get install salt-minion

. apt-get install salt-ssh

. apt-get install salt-syndic

Post-installation tasks

Now go to the Configuring Salt page.

2.2. Platform-specific Installation Instructions 19

Salt Documentation, Release 2015.8.8

2.2.11 Windows

Salt has full support for running the Salt Minion on Windows.

There are no plans for the foreseeable future to develop a Salt Master on Windows. For now you must run your Salt
Master on a supported operating system to control your Salt Minions on Windows.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows, as well.

Windows Installer

Salt Minion Windows installers can be found here. The output of md5sum <salt minion exe> should match the contents
of the corresponding md5 file.

Latest stable build from the selected branch:

Earlier builds from supported branches

Archived builds from unsupported branches

Note: The installation executable installs dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2003 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

The installer asks for 2 bits of information; the master hostname and the minion name. The installer will update the
minion config with these options and then start the minion.

The salt-minion service will appear in the Windows Service Manager and can be started and stopped there or with
the command line program sc like any other Windows service.

If the minion won't start, try installing the Microsoft Visual C++ 2008 x64 SP1 redistributable. Allow all Windows
updates to run salt-minion smoothly.

Silent Installer Options
The installer can be run silently by providing the /S option at the command line. The installer also accepts the
following options for configuring the Salt Minion silently:

« /master= A string value to set the IP address or host name of the master. Default value is “salt'

« /minion-name= A string value to set the minion name. Default is "hostname'

« /start-service= Either a 1 or 0. "1' will start the service, "0' will not. Default is to start the service after installa-
tion.

Here's an example of using the silent installer:

Salt-Minion-2015.5.6-Setup-amd64.exe /S /master=yoursaltmaster /m1'm’on—name=yourm1‘m‘onn%me /start-sel

Running the Salt Minion on Windows as an Unprivileged User

Notes: - These instructions were tested with Windows Server 2008 R2 - They are generalizable to any version of
Windows that supports a salt-minion

20 Chapter 2. Installation

https://repo.saltstack.com/windows/
https://repo.saltstack.com/windows/archive/

Salt Documentation, Release 2015.8.8

A. Create the Unprivileged User that the Salt Minion will Run As

O 0 I N U R WD

10.
11.
12.

. Click Start > Control Panel > User Accounts.

. Click Add or remove user accounts.

. Click Create new account.

. Enter salt-user (or a name of your preference) in the New account name field.
. Select the Standard user radio button.

. Click the Create Account button.

. Click on the newly created user account.

. Click the Create a password link.

. In the New password and Confirm new password fields, provide a password (e.g ' SuperSecretMin-

ionPassword4Me!").
In the Type a password hint field, provide appropriate text (e.g. *“My Salt Password").
Click the Create password button.

Close the Change an Account window.

B. Add the New User to the Access Control List for the Salt Folder

(o e =\ N B O]

. In a File Explorer window, browse to the path where Salt is installed (the default path is C:\Salt).
. Right-click on the Sa'lt folder and select Properties.

. Click on the Security tab.

. Click the Ed1t button.

. Click the Add button.

. Type the name of your designated Salt user and click the OK button.

. Check the box to Allow the Mod1i fy permission.

. Click the OK button.

. Click the OK button to close the Salt Properties window.

C. Update the Windows Service User for the salt-minion Service

NN g W

. Click Start > Administrative Tools > Services.

. In the Services list, right-click on salt-minion and select Properties.

. Click the Log On tab.

. Click the This account radio button.

. Provide the account credentials created in section A.

. Click the OK button.

. Click the OK button to the prompt confirming that the user has been granted the Log On As A

Service right.

2.2. Platform-specific Installation Instructions 21

Salt Documentation, Release 2015.8.8

8. Click the OK button to the prompt confirming that The new logon name will not take effect
until you stop and restart the service.

9. Right-Click on salt-minion and select Stop.

10. Right-Click on salt-minion and select Start.

Setting up a Windows build environment
This document will explain how to set up a development environment for salt on Windows. The development

environment allows you to work with the source code to customize or fix bugs. It will also allow you to build
your own installation.

The Easy Way

Prerequisite Software To do this the easy way you only need to install Git for Windows.

Create the Build Environment
1. Clone the Salt-Windows-Dev repo from github.

Open a command line and type:

git clone https://github.com/saltstack/salt-windows-dev

2. Build the Python Environment

Go into the salt-windows-dev directory. Right-click the file named dev_env.ps1 and select Run with Power-
Shell

If you get an error, you may need to change the execution policy.

Open a powershell window and type the following:

Set-ExecutionPolicy RemoteSigned

This will download and install Python with all the dependencies needed to develop and build salt.
3. Build the Salt Environment
Right-click on the file named dev_env_salt.ps1 and select Run with Powershell

This will clone salt into C:\Salt-Dev\salt and set it to the 2015.5 branch. You could optionally run the
command from a powershell window with a —Vers-ion switch to pull a different version. For example:

dev_env_salt.psl -Version '2014.7'

To view a list of available branches and tags, open a command prompt in your C:Salt-Devsalt directory and
type:

git branch -a
git tag -n

The Hard Way

Prerequisite Software Install the following software:

1. Git for Windows

22 Chapter 2. Installation

https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
https://github.com/saltstack/salt-windows-dev/
https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/

Salt Documentation, Release 2015.8.8

2. Nullsoft Installer
Download the Prerequisite zip file for your CPU architecture from the SaltStack download site:
« Salt32.zip
« Salt64.zip

These files contain all software required to build and develop salt. Unzip the contents of the file to C:\Salt-
Dev\temp.

Create the Build Environment
1. Build the Python Environment
« Install Python:

Browse to the C:\Salt-Dev\temp directory and find the Python installation file for your CPU Ar-
chitecture under the corresponding subfolder. Double-click the file to install python.

Make sure the following are in your PATH environment variable:

C:\Python27
C:\Python27\Scripts

« Install Pip

Open a command prompt and navigate to C: \Salt-Dev\temp Run the following command:

python get-pip.py

« Easy Install compiled binaries.

M2Crypto, PyCrypto, and PyWin32 need to be installed using Easy Install. Open a command prompt
and navigate to C: \Sa'lt-Dev\temp\<cpuarch>. Run the following commands:

easy_install -Z <M2Crypto file name>
easy_install -Z <PyCrypto file name>
easy_install -Z <PyWin32 file name>

Note: You can type the first part of the file name and then press the tab key to auto-complete the name
of the file.

« Pip Install Additional Prerequisites

All remaining prerequisites need to be pip installed. These prerequisites are as follow:

MarkupSafe
- Jinja
MsgPack
PSUtil

PyYAML

PyZMQ
- WMI

Requests
Certifi

2.2. Platform-specific Installation Instructions 23

http://downloads.sourceforge.net/project/nsis/NSIS%203%20Pre-release/3.0b1/nsis-3.0b1-setup.exe/
http://repo.saltstack.com/windows/dependencies/Salt32.zip/
http://repo.saltstack.com/windows/dependencies/Salt64.zip/

Salt Documentation, Release 2015.8.8

Open a command prompt and navigate to C: \Salt-Dev\temp. Run the following commands:

pip install <cpuarch>\<MarkupSafe file name>
pip install <Jinja file name>

pip install <cpuarch>\<MsgPack file name>
pip install <cpuarch>\<psutil file name>

pip install <cpuarch>\<PyYAML file name>

pip install <cpuarch>\<pyzmq file name>

pip install <WMI file name>

pip install <requests file name>

pip install <certifi file name>

2. Build the Salt Environment
« Clone Salt

Open a command prompt and navigate to C: \Salt-Dev. Run the following command to clone salt:

git clone https://github.com/saltstack/salt

« Checkout Branch

Checkout the branch or tag of salt you want to work on or build. Open a command prompt and navigate
to C:\Salt-Dev\salt. Getalist of available tags and branches by running the following commands:

git fetch --all

To view a list of available branches:
git branch -a

To view a list of availabel tags:
git tag -n

Checkout the branch or tag by typing the following command:

git checkout <branch/tag name>

« Clean the Environment

When switching between branches residual files can be left behind that will interfere with the functional-
ity of salt. Therefore, after you check out the branch you want to work on, type the following commands
to clean the salt environment:

Developing with Salt

There are two ways to develop with salt. You can run salt's setup.py each time you make a change to source code or
you can use the setup tools develop mode.

Configure the Minion

Both methods require that the minion configuration be in the C:\salt directory. Copy the conf and var directo-
ries from C:\Salt-Dev\salt\pkg\ windows\buildenv to C:\salt. Now go into the C:\salt\conf
directory and edit the file name minion (no extension). You need to configure the master and id parameters in this
file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

24 Chapter 2. Installation

Salt Documentation, Release 2015.8.8

Setup.py Method

Go into the C:\Salt-Dev\salt directory from a cmd prompt and type:

python setup.py install --force

This will install python into your python installation at C: \Python27. Everytime you make an edit to your source
code, you'll have to stop the minion, run the setup, and start the minion.

To start the salt-minion go into C: \Python27\Scripts from a cmd prompt and type:

’ salt-minion

For debug mode type:

‘salt—m‘in‘ion -1 debug

To stop the minion press Ctrl+C.

Setup Tools Develop Mode (Preferred Method)

To use the Setup Tools Develop Mode go into C: \Salt-Dev\sa'lt from a cmd prompt and type:

pip install -e .

This will install pointers to your source code that resides at C:\Salt-Dev\salt. When you edit your source
code you only have to restart the minion.

Build the windows installer

This is the method of building the installer as of version 2014.7.4.

Clean the Environment

Make sure you don't have any leftover salt files from previous versions of salt in your Python directory.
1. Remove all files that start with salt in the C: \Python27\Scripts directory

2. Remove all files and directories that start with salt in the C: \Python27\L1ib\site-packages directory

Install Salt

Install salt using salt's setup.py. From the C: \Salt-Dev\sa'lt directory type the following command:

python setup.py install --force

Build the Installer

From cmd prompt go into the C: \Salt-Dev\salt\pkg\windows directory. Type the following command for
the branch or tag of salt you're building:

BuildSalt.bat <branch or tag>

2.2. Platform-specific Installation Instructions 25

Salt Documentation, Release 2015.8.8

This will copy python with salt installed to the buildenv\b-in directory, make it portable, and then create the
windows installer . The .exe for the windows installer will be placed in the installer directory.

Testing the Salt minion

1. Create the directory C:\salt (if it doesn't exist already)
2. Copy the example conf and var directories from pkg/windows/buildenv/ into C:\salt

3. Edit C:\salt\conf\minion

master: ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion

5. On the salt-master accept the new minion's key

sudo salt-key -A

This accepts all unaccepted keys. If you're concerned about security just accept the key for this specific minion.
6. Test that your minion is responding

On the salt-master run:

sudo salt '*' test.ping

You should get the following response: {'your minion hostname': True}

Single command bootstrap script

On a 64 bit Windows host the following script makes an unattended install of salt, including all dependencies:

Not up to date.

This script is not up to date. Please use the installer found above

(ALl in one line.)

"PowerShell (New-Object System.Net.WebClient).DownloadFile('http://csa-net.dk/salt/bootstrap64.bat',

You can execute the above command remotely from a Linux host using winexe:

winexe -U "administrator" //fqdn "PowerShell (New-Object)"

For more info check http://csa-net.dk/salt

Packages management under Windows 2003

On windows Server 2003, you need to install optional component * wmi windows installer provider"” to have full list
of installed packages. If you don't have this, salt-minion can't report some installed software.

26 Chapter 2. Installation

http://csa-net.dk/salt

Salt Documentation, Release 2015.8.8

2.2.12 SUSE

Installation from the SaltStack Repository

Packages for SUSE 12 SP1, SUSE 12, SUSE 11, openSUSE 13 and openSUSE Leap 42.1 are available in the SaltStack
Repository.

Instructions are at http://repo.saltstack.com/#suse.

Installation from the SUSE Repository

With openSUSE 13.2, Salt 2014.1.11 is available in the primary repositories. The devel:language:python repo will
have more up to date versions of salt, all package development will be done there.

Installation
Salt can be installed using zypper and is available in the standard openSUSE repositories.
Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

‘systemctl enable salt-master.service

To start the Master:

‘systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

2.2. Platform-specific Installation Instructions 27

http://repo.saltstack.com/#suse

Salt Documentation, Release 2015.8.8

’chkconf'ig salt-master on

To start the Master:

’ rcsalt-master start

Minion

To have the Minion start automatically at boot time:

’chkconf'ig salt-minion on

To start the Minion:

’ rcsalt-minion start

Unstable Release
openSUSE

For openSUSE Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages
zypper refresh
zypper install salt salt-minion salt-master

:python/openSUSE_Factory/deve

For openSUSE 13.2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages
zypper refresh
zypper install salt salt-minion salt-master

:python/openSUSE_13.2/devel:’

For openSUSE 13.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages
zypper refresh
zypper install salt salt-minion salt-master

:python/openSUSE_13.1/devel:’

For bleeding edge python Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages
zypper refresh
zypper install salt salt-minion salt-master

:python/bleeding_edge_python.

Suse Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages
zypper refresh
zypper install salt salt-minion salt-master

:python/SLE_12/devel: languag:

For SLE 11 SP3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages
zypper refresh
zypper install salt salt-minion salt-master

:python/SLE_11_3$P3/devel: lan;

28 Chapter 2. Installation

Salt Documentation, Release 2015.8.8

For SLE 11 SP2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_$P2/devel: lan;
zypper refresh
zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

2.3 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.
« Python 2.6 >= 2.6 <3.0
« msgpack-python - High-performance message interchange format
« YAML - Python YAML bindings
« Jinja2 - parsing Salt States (configurable in the master settings)
« MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

« apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

+ Requests - HTTP library
Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:
o ZeroMQ:
- ZeroMQ >=3.2.0
- pyzmgq >= 2.2.0 - ZeroMQ Python bindings
— PyCrypto - The Python cryptography toolkit
« RAET:
— libnacl - Python bindings to libsodium
— ioflo - The flo programming interface raet and salt-raet is built on
— RAET - The worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

python setup.py --salt-transport=raet install

This way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the ——salt-transport install option can be provided like:

pip install --install-option="--salt-transport=raet" salt

Note: Salt does not bundle dependencies that are typically distributed as part of the base OS. If you have unmet
dependencies and are using a custom or minimal installation, you might need to install some additional packages

from your OS vendor.

2.3. Dependencies 29

http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://zeromq.org/
https://github.com/saltstack/raet
http://zeromq.org/
https://github.com/zeromq/pyzmq
https://www.dlitz.net/software/pycrypto/
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/

Salt Documentation, Release 2015.8.8

2.4 Optional Dependencies

« mako - an optional parser for Salt States (configurable in the master settings)

+ gcc - dynamic Cython module compiling

2.5 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

30 Chapter 2. Installation

http://www.makotemplates.org/
http://cython.org/

CHAPTER 3

Tutorials

3.1 Introduction

3.1.1 Salt Masterless Quickstart
Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Stand up a master server via States (Salting a Salt Master)
« Use salt-call commands on a system without connectivity to a master
« Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

curl -L https://bootstrap.saltstack.com -o bootstrap_salt.sh
sudo sh bootstrap_salt.sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Local the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

31

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html

Salt Documentation, Release 2015.8.8

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

base:
l*l:

- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration
- 1dinstalled # function declaration

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a minion instead of executing them from
the master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.apply

The ——local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.apply -1 debug

The minion first examines the top. s'ls file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver . s'ls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

32 Chapter 3. Tutorials

http://docs.saltstack.com/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2015.8.8

3.2 Basics

3.2.1 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the file_client option to Local the minion is configured to not gather this
data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Llocal and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to " “script" deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

salt-call state.apply

Or the salt-call command can be executed with the ——local flag, this makes it unnecessary to change the config-
uration file:

3.2. Basics 33

Salt Documentation, Release 2015.8.8

salt-call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

3.2.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

’f'irewall—cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

Please choose the desired zone according to your setup. Don't forget to reload after you made your changes.

’ firewall-cmd --reload

RHEL 6 / CentOS 6

The lokk1it command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

lokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

34 Chapter 3. Tutorials

https://fedoraproject.org/wiki/FirewallD
https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2

Salt Documentation, Release 2015.8.8

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST2:

yast2 firewall

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

‘ /etc/sysconfig/iptables

Arch Linux:

’ /etc/iptables/iptables.rules

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the additions to
pf.conf needed to access the Salt master.

pass 1in on S$int_if proto tcp from any to $int_if port 4505
pass 1in on $int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to be reloaded. This can be done using
the pfctl command.

pfctl -vf /etc/pf.conf

3.2. Basics 35

http://www.netfilter.org/
https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2015.8.8

3.2.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
Allow Salt to communicate with Master on the loopback interface

-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT

Reject everything else

-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening
network socket of salt—-master on the loopback interface. Without this you will see no outgoing Salt traffic from

the master, even for a simple salt 'x' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

3.2.4 Using cron with Salt

The Salt Minion can initiate its own highstate using the salt-call command.

$ salt-call state.apply

This will cause the minion to check in with the master and ensure it is in the correct *“state".

3.2.5 Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can use cron to run the salt-call
command:

0 0 x x * salt-call state.apply

The above cron entry will run a highstate every day at midnight.

Note: When executing Salt using cron, keep in mind that the default PATH for cron may not include the path for
any scripts or commands used by Salt, and it may be necessary to set the PATH accordingly in the crontab:

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/opt/bin

® 0 * x x salt-call state.apply

3.2.6 Remote execution tutorial

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

36 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Order your minions around

Now that you have a master and at least one minion communicating with each other you can perform commands on
the minion via the salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also:

salt manpage

target

The target component allows you to filter which minions should run the following function. The default filter is a
glob on the minion id. For example:

salt '+x' test.ping
salt 'x.example.org' test.ping

Targets can be based on minion system information using the Grains system:

salt -G 'os:Ubuntu' test.ping

See also:
Grains system

Targets can be filtered by regular expression:

’salt -E 'virtmach[0-9]' test.ping

Targets can be explicitly specified in a list:

’salt -L 'foo,bar,baz,quo' test.ping

Or Multiple target types can be combined in one command:

‘salt -C 'GRos:Ubuntu and webserx or E@database.x' test.ping

function

A function is some functionality provided by a module. Salt ships with a large collection of available functions. List
all available functions on your minions:

salt 'x' sys.doc

Here are some examples:

Show all currently available minions:

salt '+x' test.ping

Run an arbitrary shell command:

3.2. Basics 37

https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2015.8.8

salt 'x' cmd.run 'uname -a'

See also:

the full list of modules

arguments

Space-delimited arguments to the function:

‘salt 'x' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

’salt 'x' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

3.2.7 Pillar Walkthrough

Note: This walkthrough assumes that the reader has already completed the initial Salt walkthrough.

Pillars are tree-like structures of data defined on the Salt Master and passed through to minions. They allow confi-
dential, targeted data to be securely sent only to the relevant minion.

Note: Grains and Pillar are sometimes confused, just remember that Grains are data about a minion which is stored
or generated from the minion. This is why information like the OS and CPU type are found in Grains. Pillar is

information about a minion or many minions stored or generated on the Salt Master.

Pillar data is useful for:

Highly Sensitive Data: Information transferred via pillar is guaranteed to only be presented to the minions that are
targeted, making Pillar suitable for managing security information, such as cryptographic keys and passwords.

Minion Configuration: Minion modules such as the execution modules, states, and returners can often be configured
via data stored in pillar.

Variables: Variables which need to be assigned to specific minions or groups of minions can be defined in pillar and
then accessed inside sls formulas and template files.

Arbitrary Data: Pillar can contain any basic data structure in dictionary format, so a key/value store can be defined
making it easy to iterate over a group of values in sls formulas.

Pillar is therefore one of the most important systems when using Salt. This walkthrough is designed to get a simple
Pillar up and running in a few minutes and then to dive into the capabilities of Pillar and where the data is available.

Setting Up Pillar

The pillar is already running in Salt by default. To see the minion's pillar data:

salt '+x' pillar.items

Note: Prior to version 0.16.2, this function is named pillar.data. This function name is still supported for
backwards compatibility.

38 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

By default the contents of the master configuration file are loaded into pillar for all minions. This enables the master
configuration file to be used for global configuration of minions.

Similar to the state tree, the pillar is comprised of sls files and has a top file. The default location for the pillar is in
/srv/pillar.

Note: The pillar location can be configured via the pillar_roots option inside the master configuration file. It must
not be in a subdirectory of the state tree or file_roots. If the pillar is under file_roots, any pillar targeting can be

bypassed by minions.

To start setting up the pillar, the /srv/pillar directory needs to be present:

\mkdir /srv/pillar

Now create a simple top file, following the same format as the top file used for states:

/srv/pillar/top.sls

base:
I*I:
- data

This top file associates the data.sls file to all minions. Now the /srv/pillar/data.sls file needs to be popu-
lated:

/srv/pillar/data.sls:

‘info: some data

To ensure that the minions have the new pillar data, issue a command to them asking that they fetch their pillars
from the master:

‘salt 'x' saltutil.refresh_pillar

Now that the minions have the new pillar, it can be retrieved:

’ salt 'x' pillar.items

The key info should now appear in the returned pillar data.

More Complex Data

Unlike states, pillar files do not need to define formulas. This example sets up user data with a UID:

/srv/pillar/users/init.sls

users:
thatch: 1000
shouse: 1001
utahdave: 1002
redbeard: 1003

Note: The same directory lookups that exist in states exist in pillar, so the file users/init.sls can be referenced
with users in the top file.

The top file will need to be updated to include this sls file:
/srv/pillar/top.sls

3.2. Basics 39

Salt Documentation, Release 2015.8.8

base:
I*I:

- data

- users

Now the data will be available to the minions. To use the pillar data in a state, you can use Jinja:

/srv/salt/users/init.sls

{% for user, uid 1in pillar.get('users', {}).items() %}
{{user}}:
user.present:
- uid: {{uid}}

{% endfor %}

This approach allows for users to be safely defined in a pillar and then the user data is applied in an sls file.

Parameterizing States With Pillar

Pillar data can be accessed in state files to customise behavior for each minion. All pillar (and grain) data applicable
to each minion is substituted into the state files through templating before being run. Typical uses include setting
directories appropriate for the minion and skipping states that don't apply.

A simple example is to set up a mapping of package names in pillar for separate Linux distributions:

/srv/pillar/pkg/init.sls:

pkgs:
% if grains['os_family'] == 'RedHat' %}
apache: httpd
vim: vim-enhanced
% elif grains['os_family'] == 'Debian' %
apache: apache2
vim: vim
% elif grains['os'] == 'Arch' %}
apache: apache
vim: vim
% endif %

The new pkg sls needs to be added to the top file:
/srv/pillar/top.sls:

base:
I*I:

- data

- users

- pkg

Now the minions will auto map values based on respective operating systems inside of the pillar, so sls files can be
safely parameterized:

/srv/salt/apache/init.sls

apache:
pkg.installed:
- name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

40 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Note: The function pillar.get used in this example was added to Salt in version 0.14.0

/srv/salt/apache/init.sls

apache:
pkg.installed:
- name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

In the above example, if the pillar value pillar['pkgs']['apache'] isnot set in the minion's pillar, then the
default of httpd will be used.

Note: Under the hood, pillar is just a Python dict, so Python dict methods such as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow into more flexible formulas without
refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls

vim:
pkg.installed: []

/etc/vimrc:
file.managed:
- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root
- require:
- pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls

vim:
pkg.installed:
- name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:

file.managed:
- source: {{ pillar['vimrc'] }}
- mode: 644
- user: root
- group: root
- require:

- pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

{% if grains['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc
{% elif grains['id'].startswith('qga') %}

3.2. Basics 41

Salt Documentation, Release 2015.8.8

vimrc: salt://edit/ga_vimrc
% else %}

vimrc: salt://edit/vimrc

% endif %

Ensuring that the right vimrc is sent out to the correct minions.

Setting Pillar Data on the Command Line

Pillar data can be set on the command line when running state.apply <salt.modules.state.apply_()
like so:

salt '+' state.apply pillar='{"foo": "bar"}'
salt '+' state.apply my_sls_file pillar='{"hello": "world"}'

Note: If a key is passed on the command line that already exists on the minion, the key that is passed in will
overwrite the entire value of that key, rather than merging only the specified value set via the command line.

The example below will swap the value for vim with telnet in the previously specified list, notice the nested pillar
dict:

salt '+' state.apply edit.vim pillar="{"pkgs": {"vim": "telnet"}}'

Note: This will attempt to install telnet on your minions, feel free to uninstall the package or replace telnet value
with anything else.

More On Pillar

Pillar data is generated on the Salt master and securely distributed to minions. Salt is not restricted to the pillar sls
files when defining the pillar but can retrieve data from external sources. This can be useful when information about
an infrastructure is stored in a separate location.

Reference information on pillar and the external pillar interface can be found in the Salt documentation:

Pillar
Minion Config in Pillar
Minion configuration options can be set on pillars. Any option that you want to modify, should be in the first level

of the pillars, in the same way you set the options in the config file. For example, to configure the MySQL root
password to be used by MySQL Salt execution module:

mysql.pass: hardtoguesspassword

This is very convenient when you need some dynamic configuration change that you want to be applied on the fly.
For example, there is a chicken and the egg problem if you do this:

mysql-admin-passwd:
mysql_user.present:
- name: root
- password: somepasswd

mydb:
mysql_db.present

42 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

The second state will fail, because you changed the root password and the minion didn't notice it. Setting mysql.pass
in the pillar, will help to sort out the issue. But always change the root admin password in the first place.

This is very helpful for any module that needs credentials to apply state changes: mysql, keystone, etc.

3.3 States

3.3.1 How Do I Use Salt States?

Simplicity, Simplicity, Simplicity

Many of the most powerful and useful engineering solutions are founded on simple principles. Salt States strive to
do just that: K.LS.S. (Keep It Stupidly Simple)

The core of the Salt State system is the SLS, or SaLt State file. The SLS is a representation of the state in which a system
should be in, and is set up to contain this data in a simple format. This is often called configuration management.

Note: This is just the beginning of using states, make sure to read up on pillar Pillar next.

It is All Just Data

Before delving into the particulars, it will help to understand that the SLS file is just a data structure under the hood.
While understanding that the SLS is just a data structure isn't critical for understanding and making use of Salt States,
it should help bolster knowledge of where the real power is.

SLS files are therefore, in reality, just dictionaries, lists, strings, and numbers. By using this approach Salt can be
much more flexible. As one writes more state files, it becomes clearer exactly what is being written. The result is a
system that is easy to understand, yet grows with the needs of the admin or developer.

The Top File

The example SLS files in the below sections can be assigned to hosts using a file called top.sls. This file is described
in-depth here.

Default Data - YAML

By default Salt represents the SLS data in what is one of the simplest serialization formats available - YAML.
A typical SLS file will often look like this in YAML:

Note: These demos use some generic service and package names, different distributions often use different names
for packages and services. For instance apache should be replaced with httpd on a Red Hat system. Salt uses the

name of the init script, systemd name, upstart name etc. based on what the underlying service management for the
platform. To get a list of the available service names on a platform execute the service.get_all salt function.

Information on how to make states work with multiple distributions is later in the tutorial.

3.3. States 43

http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/2/library/stdtypes.html#typesnumeric
http://yaml.org/spec/1.1/

Salt Documentation, Release 2015.8.8

apache:
pkg.installed: []
service.running:
- require:
- pkg: apache

This SLS data will ensure that the package named apache is installed, and that the apache service is running. The
components can be explained in a simple way.

The first line is the ID for a set of data, and it is called the ID Declaration. This ID sets the name of the thing that
needs to be manipulated.

The second and third lines contain the state module function to be run, in the format
<state_module>.<function>. The pkg.installed state module function ensures that a software
package is installed via the system's native package manager. The service.running state module function
ensures that a given system daemon is running.

Finally, on line five, is the word require. This is called a Requisite Statement, and it makes sure that the Apache
service is only started after a successful installation of the apache package.

Adding Configs and Users

When setting up a service like an Apache web server, many more components may need to be added. The Apache
configuration file will most likely be managed, and a user and group may need to be set up.

apache:
pkg.installed: []
service.running:
- watch:
- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache
user.present:
- uid: 87
- gid: 87
- home: /var/www/html
- shell: /bin/nologin
- require:
- group: apache
group.present:
- gid: 87
- require:
- pkg: apache

/etc/httpd/conf/httpd.conf:
file.managed:
- source: salt://apache/httpd.conf
- user: root
- group: root
- mode: 644

This SLS data greatly extends the first example, and includes a config file, a user, a group and new requisite statement:
watch.

Adding more states is easy, since the new user and group states are under the Apache ID, the user and group will
be the Apache user and group. The require statements will make sure that the user will only be made after the
group, and that the group will be made only after the Apache package is installed.

44 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Next, the requi re statement under service was changed to watch, and is now watching 3 states instead of just one.
The watch statement does the same thing as require, making sure that the other states run before running the state
with a watch, but it adds an extra component. The watch statement will run the state's watcher function for any
changes to the watched states. So if the package was updated, the config file changed, or the user uid modified, then
the service state's watcher will be run. The service state's watcher just restarts the service, so in this case, a change
in the config file will also trigger a restart of the respective service.

Moving Beyond a Single SLS

When setting up Salt States in a scalable manner, more than one SLS will need to be used. The above examples were
in a single SLS file, but two or more SLS files can be combined to build out a State Tree. The above example also
references a file with a strange source - salt://apache/httpd.conf. That file will need to be available as
well.

The SLS files are laid out in a directory structure on the Salt master; an SLS is just a file and files to download are
just files.

The Apache example would be laid out in the root of the Salt file server like this:

apache/init.sls
apache/httpd.conf

So the httpd.conf is just a file in the apache directory, and is referenced directly.

Do not use dots in SLS file names or their directories

The initial implementation of top. sls and Include declaration followed the python import model where a slash
is represented as a period. This means that a SLS file with a period in the name (besides the suffix period) can
not be referenced. For example, webserver_1.0.sls is not referenceable because webserver_1.0 would refer to the
directory/file webserver_1/0.sls

The same applies for any subdirecortories, this is especially “tricky' when git repos are created. Another command
that typically can't render it's output is ~ state.show_s1s’ of a file in a path that contains a dot.

But when using more than one single SLS file, more components can be added to the toolkit. Consider this SSH
example:

ssh/init.sls:

openssh-client:
pkg.installed

/etc/ssh/ssh_config:

file.managed:
- user: root
- group: root
- mode: 644
- source: salt://ssh/ssh_config
- require:

- pkg: openssh-client

ssh/server.sls:

include:
- ssh

openssh-server:
pkg.installed

3.3. States 45

Salt Documentation, Release 2015.8.8

sshd:
service.running:
- require:
- pkg: openssh-client
- pkg: openssh-server
- file: /etc/ssh/banner
- file: /etc/ssh/sshd_config

/etc/ssh/sshd_config:

file.managed:
- user: root
- group: root
- mode: 644
- source: salt://ssh/sshd_config
- require:

- pkg: openssh-server

/etc/ssh/banner:
file:
- managed
- user: root
- group: root
- mode: 644
- source: salt://ssh/banner
- require:
- pkg: openssh-server

Note: Notice that we use two similar ways of denoting that a file is managed by Salt. In the /etc/ssh/sshd_config state
section above, we use the file.managed state declaration whereas with the /etc/ssh/banner state section, we use the

file state declaration and add a managed attribute to that state declaration. Both ways produce an identical result;
the first way -- using file.managed -- is merely a shortcut.

Now our State Tree looks like this:

apache/init.sls
apache/httpd.conf
ssh/init.sls
ssh/server.sls
ssh/banner
ssh/ssh_config
ssh/sshd_config

This example now introduces the include statement. The include statement includes another SLS file so that
components found in it can be required, watched or as will soon be demonstrated - extended.

The include statement allows for states to be cross linked. When an SLS has an include statement it is literally
extended to include the contents of the included SLS files.

Note that some of the SLS files are called init.sls, while others are not. More info on what this means can be found
in the States Tutorial.

Extending Included SLS Data

Sometimes SLS data needs to be extended. Perhaps the apache service needs to watch additional resources, or under
certain circumstances a different file needs to be placed.

46 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

In these examples, the first will add a custom banner to ssh and the second will add more watchers to apache to
include mod_python.

ssh/custom-server.sls:

include:
- ssh.server

extend:
/etc/ssh/banner:
file:
- source: salt://ssh/custom-banner

python/mod_python.sls:

include:
- apache

extend:
apache:
service:
- watch:
- pkg: mod_python

mod_python:
pkg.installed

The custom-server.sls file uses the extend statement to overwrite where the banner is being downloaded
from, and therefore changing what file is being used to configure the banner.

In the new mod_python SLS the mod_python package is added, but more importantly the apache service was ex-
tended to also watch the mod_python package.

Using extend with require or watch

The extend statement works differently for require or watch. It appends to, rather than replacing the requisite
component.

Understanding the Render System

Since SLS data is simply that (data), it does not need to be represented with YAML. Salt defaults to YAML because
it is very straightforward and easy to learn and use. But the SLS files can be rendered from almost any imaginable
medium, so long as a renderer module is provided.

The default rendering system is the yaml_jinja renderer. The yaml_jinja renderer will first pass the template
through the Jinja2 templating system, and then through the YAML parser. The benefit here is that full programming
constructs are available when creating SLS files.

Other renderers available are yaml_mako and yaml_wempy which each use the Mako or Wempy templating
system respectively rather than the jinja templating system, and more notably, the pure Python or py, pydsl &
pyobjects renderers. The py renderer allows for SLS files to be written in pure Python, allowing for the utmost
level of flexibility and power when preparing SLS data; while the pydsl renderer provides a flexible, domain-specific
language for authoring SLS data in Python; and the pyobjects renderer gives you a *"Pythonic" interface to building
state data.

Note: The templating engines described above aren't just available in SLS files. They can also be used in
file.managed states, making file management much more dynamic and flexible. Some examples for using tem-

plates in managed files can be found in the documentation for the file states, as well as the MooseFS example below.

3.3. States 47

http://jinja.pocoo.org/
http://www.makotemplates.org/
https://fossil.secution.com/u/gcw/wempy/doc/tip/README.wiki
http://legacy.python.org/dev/peps/pep-0008/

Salt Documentation, Release 2015.8.8

Getting to Know the Default - yaml_jinja

The default renderer - yaml_jinja, allows for use of the jinja templating system. A guide to the Jinja templating
system can be found here: http://jinja.pocoo.org/docs

When working with renderers a few very useful bits of data are passed in. In the case of templating engine based
renderers, three critical components are available, salt, grains, and pillar. The salt object allows for any
Salt function to be called from within the template, and grains allows for the Grains to be accessed from within
the template. A few examples:

apache/init.sls:

apache:
pkg.installed:
{% if grains['os'] == 'RedHat'%}
- name: httpd
% endif %}
service.running:
% if grains['os'] == 'RedHat'%}
- name: httpd
% endif %}
- watch:
- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache
user.present:
- uid: 87
- gid: 87
- home: /var/www/html
- shell: /bin/nologin
- require:
- group: apache
group.present:
- gid: 87
- require:
- pkg: apache

/etc/httpd/conf/httpd.conf:
file.managed:
- source: salt://apache/httpd.conf
- user: root
- group: root
- mode: 644

This example is simple. If the 0s grain states that the operating system is Red Hat, then the name of the Apache
package and service needs to be httpd. A more aggressive way to use Jinja can be found here, in a module to set up
a MooseFS distributed filesystem chunkserver:

moosefs/chunk.sls:

include:
- moosefs

% for mnt in salt['emd.run']('ls /dev/data/moosex').split() %
/mnt/moose{{ mnt[-1] }}:
mount.mounted:
- device: {{ mnt }}

48 Chapter 3. Tutorials

http://jinja.pocoo.org/docs

Salt Documentation, Release 2015.8.8

- fstype: xfs
- mkmnt: True
file.directory:
- user: mfs
- group: mfs
- require:
- user: mfs
- group: mfs
{% endfor %}

/etc/mfshdd.cfg:
file.managed:
- source: salt://moosefs/mfshdd.cfg
- user: root
- group: root
- mode: 644
- template: jinja
- require:
- pkg: mfs-chunkserver

/etc/mfschunkserver.cfg:

file.managed:
- source: salt://moosefs/mfschunkserver.cfg
- user: root
- group: root
- mode: 644
- template: jinja
- require:

- pkg: mfs-chunkserver

mfs-chunkserver:
pkg.installed: []
mfschunkserver:
service.running:
- require:
{% for mnt in salt['cmd.run']('ls /dev/data/moosex') %}
- mount: /mnt/moose{{ mnt[-1] }}
- file: /mnt/moose{{ mnt[-1] }}
% endfor %}
- file: /etc/mfschunkserver.cfg
- file: /etc/mfshdd.cfg
- file: /var/lib/mfs

This example shows much more of the available power of Jinja. Multiple for loops are used to dynamically de-
tect available hard drives and set them up to be mounted, and the sa'lt object is used multiple times to call shell
commands to gather data.

Introducing the Python, PyDSL, and the Pyobjects Renderers

Sometimes the chosen default renderer might not have enough logical power to accomplish the needed task. When
this happens, the Python renderer can be used. Normally a YAML renderer should be used for the majority of SLS
files, but an SLS file set to use another renderer can be easily added to the tree.

This example shows a very basic Python SLS file:
python/django.sls:

3.3. States 49

Salt Documentation, Release 2015.8.8

#1py

def run():

rr

Install the django package

rr

return {'include': ['python'],
'django': {'pkg': ['installed']}}

This is a very simple example; the first line has an SLS shebang that tells Salt to not use the default renderer, but to
use the py renderer. Then the run function is defined, the return value from the run function must be a Salt friendly
data structure, or better known as a Salt HighState data structure.

Alternatively, using the pydsl renderer, the above example can be written more succinctly as:

#!pydsl

include('python', delayed=True)
state('django') .pkg.installed()

The pyobjects renderer provides an *"Pythonic" object based approach for building the state data. The above example
could be written as:

#!pyobjects

include('python')
Pkg.installed("django")

These Python examples would look like this if they were written in YAML:

include:
- python

django:
pkg.installed

This example clearly illustrates that; one, using the YAML renderer by default is a wise decision and two, unbridled
power can be obtained where needed by using a pure Python SLS.

Running and Debugging Salt States

Once the rules in an SLS are ready, they should be tested to ensure they work properly. To invoke these rules, simply
execute salt '*' state.apply on the command line. If you get back only hostnames with a : after, but
no return, chances are there is a problem with one or more of the sls files. On the minion, use the salt-call
command to examine the output for errors:

salt-call state.apply -1 debug

This should help troubleshoot the issue. The minion can also be started in the foreground in debug mode by running
salt-minion -1 debug.

Next Reading

With an understanding of states, the next recommendation is to become familiar with Salt's pillar interface:

Pillar Walkthrough

50 Chapter 3. Tutorials

http://legacy.python.org/dev/peps/pep-0008/

Salt Documentation, Release 2015.8.8

3.3.2 States tutorial, part 1 - Basic Usage
The purpose of this tutorial is to demonstrate how quickly you can configure a system to be managed by Salt States.
For detailed information about the state system please refer to the full states reference.

This tutorial will walk you through using Salt to configure a minion to run the Apache HTTP server and to ensure
the server is running.

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Setting up the Salt State Tree
States are stored in text files on the master and transferred to the minions on demand via the master's File Server.
The collection of state files make up the State Tree.

To start using a central state system in Salt, the Salt File Server must first be set up. Edit the master config file
(file_roots)and uncomment the following lines:

file_roots:
base:
- /srv/salt

Note: If you are deploying on FreeBSD via ports, the file_roots path defaults to
/usr/local/etc/salt/states.

Restart the Salt master in order to pick up this change:

pkill salt-master
salt-master -d

Preparing the Top File

On the master, in the directory uncommented in the previous step, (/srv/sa'lt by default), create a new file called
top. sls and add the following:

base:
I*I:

- webserver

The top file is separated into environments (discussed later). The default environment is base. Under the base
environment a collection of minion matches is defined; for now simply specify all hosts (*).

Targeting minions

The expressions can use any of the targeting mechanisms used by Salt — minions can be matched by glob, PCRE
regular expression, or by grains. For example:

base:
'G@os:Fedora':
- match: grain
- webserver

3.3. States 51

https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2015.8.8

Create an s's file

In the same directory as the fop file, create a file named webserver.sls, containing the following:

apache: # ID declaration
pkg: # state declaration
- 1dinstalled # function declaration

The first line, called the ID declaration, is an arbitrary identifier. In this case it defines the name of the package to be
installed.

Note: The package name for the Apache httpd web server may differ depending on OS or distro — for example, on
Fedora it is httpd but on Debian/Ubuntu it is apache2.

The second line, called the State declaration, defines which of the Salt States we are using. In this example, we are
using the pkg state to ensure that a given package is installed.

The third line, called the Function declaration, defines which function in the pkg state module to call.

Renderers

States ss files can be written in many formats. Salt requires only a simple data structure and is not concerned with
how that data structure is built. Templating languages and DSLs are a dime-a-dozen and everyone has a favorite.

Building the expected data structure is the job of Salt renderers and they are dead-simple to write.

In this tutorial we will be using YAML in Jinja2 templates, which is the default format. The default can be changed
by editing renderer in the master configuration file.

Install the package

Next, let's run the state we created. Open a terminal on the master and run:

salt '+x' state.apply

Our master is instructing all targeted minions to run state. apply. When this function is executied without any
SLS targets, a minion will download the top file and attempt to match the expressions within it. When the minion
does match an expression the modules listed for it will be downloaded, compiled, and executed.

Note: This action is referred to as a " highstate", and can be run using the state. highstate function. How-
ever, to make the usage easier to understand (" “highstate" is not necessarily an intuitive name), a state.apply

function was added in version 2015.5.0, which when invoked without any SLS names will trigger a highstate.
state.highstate still exists and can be used, but the documentation (as can be seen above) has been updated
to reference state.apply, so keep the following in mind as you read the documentation:

- state.apply invoked without any SLS names will run state. highstate

- state.apply invoked with SLS names will run state.sls

Once completed, the minion will report back with a summary of all actions taken and all changes made.

Warning: If you have created custom grain modules, they will not be available in the top file until after the first
highstate. To make custom grains available on a minion's first highstate, it is recommended to use this example
to ensure that the custom grains are synced when the minion starts.

52 Chapter 3. Tutorials

http://en.wikipedia.org/wiki/Domain-specific_language

Salt Documentation, Release 2015.8.8

SLS File Namespace

Note that in the example above, the SLS file webserver.sls was referred to simply as webserver. The names-
pace for SLS files when referenced in top. sls or an Include declaration follows a few simple rules:

1. The .sls is discarded (i.e. webserver.sls becomes webserver).
2. Subdirectories can be used for better organization.

(a) Each subdirectory can be represented with a dot (following the python import model) or a slash.
webserver /dev.sls can also be referred to as webserver.dev

(b) Because slashes can be represented as dots, SLS files can not contain dots in the name besides the
dot for the SLS suffix. The SLS file webserver_1.0.sls can not be matched, and webserver_1.0 would
match the directory/file webserver_1/0.sls

3. A file called init.sls in a subdirectory is referred to by the path of the directory. So, web-
server/init.sls is referred to as webserver.

4. If both webserver.s'ls and webserver/init.s'ls happen to exist, webserver/init.s'ls will be
ignored and webserver . sls will be the file referred to as webserver.

Troubleshooting Salt

If the expected output isn't seen, the following tips can help to narrow down the problem.

Turn up logging Salt can be quite chatty when you change the logging setting to debug:

’ salt-minion -1 debug

Run the minion in the foreground By not starting the minion in daemon mode (-d) one can view any output from
the minion as it works:

‘ salt-minion

Increase the default timeout value when running salt. For example, to change the default timeout to 60 seconds:

|salt -t 60

For best results, combine all three:

salt-minion -1 debug # On the minion
salt '+' state.apply -t 60 # On the master

Next steps

This tutorial focused on getting a simple Salt States configuration working. Part 2 will build on this example to cover
more advanced sls syntax and will explore more of the states that ship with Salt.

3.3.3 States tutorial, part 2 - More Complex States, Requisites

Note: This tutorial builds on topics covered in part 1. It is recommended that you begin there.

In the last part of the Salt States tutorial we covered the basics of installing a package. We will now modify our
webserver.sls file to have requirements, and use even more Salt States.

3.3. States 53

Salt Documentation, Release 2015.8.8

Call multiple States

You can specify multiple State declaration under an ID declaration. For example, a quick modification to our web-
server.sls to also start Apache if it is not running:

apache:
pkg.installed: []
service.running:
- require:
- pkg: apache

Try stopping Apache before running state.apply once again and observe the output.

Note: For those running RedhatOS derivatives (Centos, AWS), you will want to specify the service name to be httpd.
More on state service here, service state. With the example above, just add * - name: httpd" above the require

line and with the same spacing.

Require other states

We now have a working installation of Apache so let's add an HTML file to customize our website. It isn't exactly
useful to have a website without a webserver so we don't want Salt to install our HTML file until Apache is installed
and running. Include the following at the bottom of your webserver/init.sls file:

apache:
pkg.installed: []
service.running:

- require:

- pkg: apache
/var/www/index.html: # ID declaration
file: # state declaration

- managed # function

- source: salt://webserver/index.html # function arg

- require: # requisite declaration
- pkg: apache # requisite reference

line 7 is the ID declaration. In this example it is the location we want to install our custom HTML file. (Note: the
default location that Apache serves may differ from the above on your OS or distro. /srv/www could also be a
likely place to look.)

Line 8 the State declaration. This example uses the Salt file state.

Line 9 is the Function declaration. The managed function will download a file from the master and install it in
the location specified.

Line 10 is a Function arg declaration which, in this example, passes the sour ce argument to the managed func-
tion.

Line 11 is a Requisite declaration.

Line 12 is a Requisite reference which refers to a state and an ID. In this example, it is referring to the ID decla-
ration from our example in part 1. This declaration tells Salt not to install the HTML file until Apache is installed.

Next, create the index.html file and save it in the webserver directory:

<IDOCTYPE html>
<html>
<head><title>Salt rocks</title></head>

54 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

<body>
<h1>This file brought to you by Salt</hi>
</body>
</html>

Last, call state.apply again and the minion will fetch and execute the highstate as well as our HTML file from
the master using Salt's File Server:

salt '+x' state.apply

Verify that Apache is now serving your custom HTML.

require vs. watch

There are two Requisite declaration, “require”, and “watch”. Not every state supports “watch”. The service state
does support “watch” and will restart a service based on the watch condition.

For example, if you use Salt to install an Apache virtual host configuration file and want to restart Apache whenever
that file is changed you could modify our Apache example from earlier as follows:

/etc/httpd/extra/httpd-vhosts.conf:
file.managed:
- source: salt://webserver/httpd-vhosts.conf

apache:
pkg.installed: []
service.running:

- watch:

- file: /etc/httpd/extra/httpd-vhosts.conf
- require:

- pkg: apache

If the pkg and service names differ on your OS or distro of choice you can specify each one separately using a Name
declaration which explained in Part 3.

Next steps

In part 3 we will discuss how to use includes, extends, and templating to make a more complete State Tree configu-
ration.

3.3.4 States tutorial, part 3 - Templating, Includes, Extends

Note: This tutorial builds on topics covered in part 1 and part 2. It is recommended that you begin there.

This part of the tutorial will cover more advanced templating and configuration techniques for sls files.

Templating SLS modules

SLS modules may require programming logic or inline execution. This is accomplished with module templating. The
default module templating system used is Jinja2 and may be configured by changing the renderer value in the
master config.

All states are passed through a templating system when they are initially read. To make use of the templating system,
simply add some templating markup. An example of an sls module with templating markup may look like this:

3.3. States 55

http://jinja.pocoo.org/

Salt Documentation, Release 2015.8.8

{% for usr in ['moe','larry','curly'] %}
{{ usr }}:

user.present
% endfor %}

This templated sls file once generated will look like this:

moe:
user.present

larry:
user.present

curly:
user.present

Here's a more complex example:

Comments in yaml start with a hash symbol.
Since jinja rendering occurs before yaml parsing, if you want to include jinja
in the comments you may need to escape them using 'jinja' comments to prevent
jinja from trying to render something which is not well-defined jinja.
e.g.
{# iterate over the Three Stooges using a {% for %}..{% endfor %} loop
with the iterator variable {{ usr }} becoming the state ID. #}
{% for usr in 'moe','larry','curly' %}
{{ usr }}:
group:
- present
user:
- present
- gid_from_name: True
- require:

- group: {{ usr }}
{% endfor %}

Using Grains in SLS modules

Often times a state will need to behave differently on different systems. Salt grains objects are made available in the
template context. The grains can be used from within sls modules:

apache:
pkg.installed:
% if grains['os'] == 'RedHat' %}
- name: httpd
% elif grains['os'] == 'Ubuntu' %

- name: apache2
% endif %}

Using Environment Variables in SLS modules

You can use salt['environ.get'] ('VARNAME') to use an environment variable in a Salt state.

MYENVVAR="wor1ld" salt-call state.template test.sls

Create a file with contents from an environment variable:
file.managed:

56 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

- name: /tmp/hello
- contents: {{ salt['environ.get']('MYENVVAR"') }3}

Error checking:

{% set myenvvar = salt['environ.get']('MYENVVAR') %}
{% if myenvvar %}

Create a file with contents from an environment variable:
file.managed:
- name: /tmp/hello
- contents: {{ salt['environ.get']('MYENVVAR') }}

% else %}
Fail - no environment passed in:
test:
A. fail_without_changes

{% endif %}

Calling Salt modules from templates

All of the Salt modules loaded by the minion are available within the templating system. This allows data to be
gathered in real time on the target system. It also allows for shell commands to be run easily from within the sls
modules.

The Salt module functions are also made available in the template context as salt:

The following example illustrates calling the group_to_gid function in the f1i le execution module with a single
positional argument called some_group_that_exists.

moe:
user.present:
- gid: {{ salt['file.group_to_gid']('some_group_that_exists') 1}

One way to think about this might be that the gid key is being assigned a value equivelent to the following python
pseudo-code:

import salt.modules.file
file.group_to_gid('some_group_that_exists')

Note that for the above example to work, some_group_that_exists must exist before the state file is processed
by the templating engine.

Below is an example that uses the network . hw_addr function to retrieve the MAC address for etho:

salt['network.hw_addr']('etho')

To examine the possible arguments to each execution module function, one can examine the module reference docu-
mentation </ref/modules/all>:

Advanced SLS module syntax

Lastly, we will cover some incredibly useful techniques for more complex State trees.

3.3. States 57

Salt Documentation, Release 2015.8.8

Include declaration

A previous example showed how to spread a Salt tree across several files. Similarly, requisites span multiple files by
using an Include declaration. For example:

python/python-1libs.sls:

python-dateutil:
pkg.installed

python/django.sls:

include:
- python.python-T1libs

django:
pkg.installed:
- require:
- pkg: python-dateutil

Extend declaration

You can modify previous declarations by using an Extend declaration. For example the following modifies the Apache
tree to also restart Apache when the vhosts file is changed:

apache/apache.sls:

apache:
pkg.installed

apache/mywebsite.sls:

include:
- apache.apache

extend:
apache:
service:
- running
- watch:
- file: /etc/httpd/extra/httpd-vhosts.conf

/etc/httpd/extra/httpd-vhosts.conf:
file.managed:
- source: salt://apache/httpd-vhosts.conf

Using extend with require or watch

The extend statement works differently for require or watch. It appends to, rather than replacing the requisite
component.

Name declaration

You can override the ID declaration by using a Name declaration. For example, the previous example is a bit more
maintainable if rewritten as follows:

58 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

apache/mywebsite.sls:

include:
- apache.apache

extend:
apache:
service:
- running
- watch:
- file: mywebsite

mywebsite:
file.managed:
- name: /etc/httpd/extra/httpd-vhosts.conf
- source: salt://apache/httpd-vhosts.conf

Names declaration

Even more powerful is using a Names declaration to override the ID declaration for multiple states at once. This
often can remove the need for looping in a template. For example, the first example in this tutorial can be rewritten
without the loop:

stooges:
user.present:
- names:
- moe
- larry
- curly

Next steps

In part 4 we will discuss how to use salt's file_roots to set up a workflow in which states can be *promoted"
from dev, to QA, to production.

3.3.5 States tutorial, part 4

Note: This tutorial builds on topics covered in part 1, part 2 and part 3. It is recommended that you begin there.

This part of the tutorial will show how to use salt's file_roots to set up a workflow in which states can be
*“promoted" from dev, to QA, to production.

Salt fileserver path inheritance

Salt's fileserver allows for more than one root directory per environment, like in the below example, which uses both
a local directory and a secondary location shared to the salt master via NFS:

In the master config file (/etc/salt/master)
file_roots:
base:
- /srv/salt
- /mnt/salt-nfs/base

3.3. States 59

Salt Documentation, Release 2015.8.8

Salt's fileserver collapses the list of root directories into a single virtual environment containing all files from each
root. If the same file exists at the same relative path in more than one root, then the top-most match " wins". For ex-
ample, if /srv/salt/foo.txtand /mnt/salt-nfs/base/foo.txt both exist, then salt://foo.txt
will point to /srv/salt/foo.txt.

Note: When using multiple fileserver backends, the order in which they are listed in the i leserver_backend
parameter also matters. If both roots and git backends contain a file with the same relative path, and roots

appears before git inthe fileserver_backend list, then the file in roots will **win", and the file in gitfs will
be ignored.

A more thorough explanation of how Salt's modular fileserver works can be found here. We recommend reading
this.

Environment configuration

Configure a multiple-environment setup like so:

file_roots:

base:

- /srv/salt/prod
ga:

- /srv/salt/qa

- /srv/salt/prod
dev:

- /srv/salt/dev

- /srv/salt/qa

- /srv/salt/prod

Given the path inheritance described above, files within /srv/salt/prod would be available in all environments.
Files within /srv/salt/qga would be available in both ga, and dev. Finally, the files within /srv/salt/dev
would only be available within the dev environment.

Based on the order in which the roots are defined, new files/states can be placed within /srv/salt/dev, and
pushed out to the dev hosts for testing.

Those files/states can then be moved to the same relative path within /srv/salt/qa, and they are now available
only in the dev and ga environments, allowing them to be pushed to QA hosts and tested.

Finally, if moved to the same relative path within /srv/salt/prod, the files are now available in all three envi-
ronments.

Practical Example

As an example, consider a simple website, installed to /var /www/foobarcom. Below is a top.sls that can be used
to deploy the website:

/srv/salt/prod/top.sls:

base:
'web*xprodx*':
- webserver.foobarcom
ga:
'webxqgax*':
- webserver.foobarcom
dev:
'webxdevx':
- webserver.foobarcom

60 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Using pillar, roles can be assigned to the hosts:

/srv/pillar/top.sls:

base:
'webxprodx"':
- webserver.prod
'webxqax*':
- webserver.qga
'web*xdevx*':
- webserver.dev

/srv/pillar/webserver/prod.sls:

‘ webserver_role: prod

/srv/pillar/webserver/qa.sls:

’ webserver_role: qa

/srv/pillar/webserver/dev.sls:

’ webserver_role: dev

And finally, the SLS to deploy the website:

/srv/salt/prod/webserver/foobarcom.sls:

{% if pillar.get('webserver_role', '') %}
/var /www/foobarcom:
file.recurse:

- source: salt://webserver/src/foobarcom

- env: {{ pillar['webserver_role'] }}

- user: www

- group: www

- dir_mode: 755

- file_mode: 644
{% endif %

Given the above SLS, the source for the website should initially be placed

/srv/salt/dev/webserver/src/foobarcom

First, let's deploy to dev. Given the configuration in the top file, this can be done using state.apply:

in

‘salt --pillar 'webserver_role:dev' state.apply

However, in the event that it is not desirable to apply all states configured in the top file (which could be likely in
more complex setups), it is possible to apply just the states for the foobarcom website, by invoking state.apply

with the desired SLS target as an argument:

‘salt --pillar 'webserver_role:dev' state.apply webserver.foobarcom

Once the site has been tested in dev, then the files <can be moved

from

/srv/salt/dev/webserver/src/foobarcom to /srv/salt/qa/webserver/src/foobarcom

and deployed using the following:

’salt --pillar 'webserver_role:qga' state.apply webserver.foobarcom

Finally, once the site has been tested in qa, then the files can be moved

from

/srv/salt/qa/webserver/src/foobarcom to /srv/salt/prod/webserver/src/foobarcom

and deployed using the following:

3.3. States

61

Salt Documentation, Release 2015.8.8

salt --pillar 'webserver_role:prod' state.apply webserver.foobarcom

Thanks to Salt's fileserver inheritance, even though the files have been moved to within /srv/salt/prod, they
are still available from the same sa'lt:// URI in both the qa and dev environments.

Continue Learning

The best way to continue learning about Salt States is to read through the reference documentation and to look
through examples of existing state trees. Many pre-configured state trees can be found on GitHub in the saltstack-
formulas collection of repositories.

If you have any questions, suggestions, or just want to chat with other people who are using Salt, we have a very
active community and we'd love to hear from you.

In addition, by continuing to part 5, you can learn about the powerful orchestration of which Salt is capable.

3.3.6 States Tutorial, Part 5 - Orchestration with Salt

Note: This tutorial builds on some of the topics covered in the earlier States Walkthrough pages. It is recommended
to start with Part 1 if you are not familiar with how to use states.

Orchestration is accomplished in salt primarily through the Orchestrate Runner. Added in version 0.17.0, this Salt
Runner can use the full suite of requisites available in states, and can also execute states/functions using salt-ssh.

The Orchestrate Runner

New in version 0.17.0.

Note: Orchestrate Deprecates OverState

The Orchestrate Runner (originally called the state.sls runner) offers all the functionality of the OverState, but with
some advantages:

« All requisites available in states can be used.
« The states/functions will also work on salt-ssh minions.

The Orchestrate Runner was added with the intent to eventually deprecate the OverState system, however the Over-
State will still be maintained until Salt 2015.8.0.

The orchestrate runner generalizes the Salt state system to a Salt master context. Whereas state.apply is con-
currently and independently executed on each Salt minion, the state.orchestrate runner is executed on the
master, giving it a master-level view and control over requisites, such as state ordering and conditionals. This al-
lows for inter minion requisites, like ordering the application of states on different minions that must not happen
simultaneously, or for halting the state run on all minions if a minion fails one of its states.

If you want to setup a load balancer in front of a cluster of web servers, for example, you can ensure the load balancer
is setup before the web servers or stop the state run altogether if one of the minions does not set up correctly.

state.apply allows you to statefully manage each minion and the state.orchestrate runner allows you
to statefully manage your entire infrastructure.

62 Chapter 3. Tutorials

https://github.com/saltstack-formulas
https://github.com/saltstack-formulas

Salt Documentation, Release 2015.8.8

Executing the Orchestrate Runner

The Orchestrate Runner command format is the same as for the state.sls function, except that since it

is a runner, it is executed with salt-run rather than salt.

Assuming you have a statesls file called

/srv/salt/orch/webserver.sls the following command run on the master will apply the states defined

in that file.

‘salt—run state.orchestrate orch.webserver

Note: state.orchisasynonym for state.orchestrate

Changed in version 2014.1.1: The runner function was renamed to state.orchestrate to avoid confusion with
the state. sls remote execution function. In versions 0.17.0 through 2014.1.0, state. sls must be used.

Examples

Function To execute a function, use salt. function:

/srv/salt/orch/cleanfoo.sls

cmd.run:
salt. function:
- tgt: 'x!
- arg:

- rm -rf /tmp/foo

salt-run state.orchestrate orch.cleanfoo

State To execute a state, use salt. state.

/srv/salt/orch/webserver.sls
install_nginx:
salt.state:
- tgt: 'webx'
- sls:
- nginx

‘salt—run state.orchestrate orch.webserver

Highstate To run a highstate, set highstate: True in your state config:

/srv/salt/orch/web_setup.sls
webserver_setup:
salt.state:
- tgt: 'webx'
- highstate: True

salt-run state.orchestrate orch.web_setup

More Complex Orchestration

Many states/functions can be configured in a single file, which when combined with the full suite of requisites, can
be used to easily configure complex orchestration tasks. Additionally, the states/functions will be executed in the

3.3. States

63

Salt Documentation, Release 2015.8.8

order in which they are defined, unless prevented from doing so by any requisites, as is the default in SLS files since
0.17.0.

cmd.run:
salt.function:
- tgt: 10.0.0.0/24
- tgt_type: ipcidr
- arg:
- bootstrap

storage_setup:
salt.state:
- tgt: 'role:storage'
- tgt_type: grain
- sls: ceph
- require:
- salt: webserver_setup

webserver_setup:
salt.state:
- tgt: 'webx'
- highstate: True

Given the above setup, the orchestration will be carried out as follows:
1. The shell command bootstrap will be executed on all minions in the 10.0.0.0/24 subnet.
2. A Highstate will be run on all minions whose ID starts with **web", since the storage_setup state requires
it.

3. Finally, the ceph SLS target will be executed on all minions which have a grain called role with a value of
storage.

Note: Remember, salt-run is always executed on the master.

3.3.7 Syslog-ng usage
Overview

Syslog_ng state module is for generating syslog-ng configurations. You can do the following things:
. generate syslog-ng configuration from YAML,
« use non-YAML configuration,
« start, stop or reload syslog-ng.

There is also an execution module, which can check the syntax of the configuration, get the version and other
information about syslog-ng.

Configuration

Users can create syslog-ng configuration statements with the syslog_ng.config function. It requires a name
and a config parameter. The name parameter determines the name of the generated statement and the config param-
eter holds a parsed YAML structure.

A statement can be declared in the following forms (both are equivalent):

64 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

source.s_localhost:
syslog_ng.config:

- config:
- tcp:
- dp: "127.0.0.1"
- port: 1233

s_Tlocalhost:
syslog_ng.config:

- config:
source:
- tcp:
- dp: "127.0.0.1"
- port: 1233

The first one is called short form, because it needs less typing. Users can use lists and dictionaries to specify their
configuration. The format is quite self describing and there are more examples [at the end](#examples) of this doc-
ument.

Quotation

The quotation can be tricky sometimes but here are some rules to follow:

« when a string meant to be "string" in the generated configuration, it should be like '"string"'
in the YAML document

« similarly, users should write " 'string'" to get 'string' in the generated configuration

Full example

The following configuration is an example, how a complete syslog-ng configuration looks like:

Set the location of the configuration file
set_location:
module.run:
- name: syslog_ng.set_config_file
- m_name: "/home/tibi/install/syslog-ng/etc/syslog-ng.conf"

The syslog-ng and syslog-ng-ctl binaries are here. You needn't use
this method if these binaries can be found in a directory in your PATH.
set_bin_path:
module.run:
- name: syslog_ng.set_binary_path
- m_name: "/home/tibi/install/syslog—ng/sbin"

Writes the first lines into the config file, also erases its previous
content
write_version:
module.run:
- name: syslog_ng.write_version
- m_name: "3.6"

There 1is a shorter form to set the above variables
set_variables:
module.run:
- name: syslog_ng.set_parameters

3.3. States 65

Salt Documentation, Release 2015.8.8

- version: "3.6"
- binary_path: "/home/tibi/install/syslog-ng/sbin"
- config_file: "/home/tibi/install/syslog-ng/etc/syslog-ng.conf"

Some global options
options.global_options:
syslog_ng.config:
- config:
- time_reap: 30
- mark_freq: 10
- keep_hostname: "yes"

source.s_localhost:
syslog_ng.config:

- config:
- tcp:
- 49p: "127.0.0.1"
- port: 1233

destination.d_log_server:
syslog_ng.config:
- config:
- tcp:
- "127.0.0.1"
- port: 1234

log.1l_log_to_central_server:
syslog_ng.config:
- config:
- source: s_localhost
- destination: d_log_server

some_comment:
module.run:
- name: syslog_ng.write_config
- config: |

Another mode to use comments or existing configuration snippets
config.other_comment_form:
syslog_ng.config:
- config: |

The syslog_ng. reloaded function can generate syslog-ng configuration from YAML. If the statement (source
destination, parser, etc.) has a name, this function uses the id as the name, otherwise (log statement) it's purpose is
like a mandatory comment.

After execution this example the syslog_ng state will generate this file:

#Generated by Salt on 2014-08-18 00:11:11
@version: 3.6

options {
time_reap(
30

66 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

)

mark_freq(
10

)

keep_hostname (
yes

)

};

source s_localhost {
tep(
ip(

)
port(
1233

127.0.0.1

)
)5
}s

destination d_log_server {

tep(
127.0.0.1,
port(
1234
)
)
};
log {
source(
s_localhost
)
destination(
d_log_server
)
}s

Multi line
comment

Multi line
comment

Users can include arbitrary texts in the generated configuration with using the confi g statement (see the example
above).

Syslog_ng module functions

You can use syslog_ng.set_binary_path to set the directory which contains the syslog-ng and syslog-
ng-ctl binaries. If this directory is in your PATH, you don't need to use this function. There is also a sys-
log_ng.set_config_f1ile function to set the location of the configuration file.

3.3. States 67

Salt Documentation, Release 2015.8.8

Examples

Simple source

source s_tail {
file(
"/var/log/apache/access.log",
follow_freq(l),
flags(no-parse, validate-utf8)
)3
}s

s_tail:
Salt will call the source function of syslog_ng module
syslog_ng.config:

- config:
source:
- file:
- file: '"'"/var/log/apache/access.log""'
- follow_freq : 1
- flags:
- no-parse
- validate-utf8
OR
s_tail:
syslog_ng.config:
- config:
source:
- file:
- ''""/var/log/apache/access.log"""'
- follow_freq : 1
- flags:
- no-parse
- validate-utf8
OR

source.s_tail:
syslog_ng.config:
- config:
- file:

- ''""/var/log/apache/access.log"""'

- follow_freq : 1

- flags:
- no-parse
- validate-utf8

Complex source

source s_gsoc2014 {

tep(
ip("0.0.0.0"),
port(1234),
flags(no-parse)

68 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

)3
s

S_gsoc2014:
syslog_ng.config:
- config:
source:
- tcp:
- dp: 0.0.0.0
- port: 1234
- flags: no-parse

Filter

filter f_json {

match(
"@json:"

)3

}s

f_json:
syslog_ng.config:
- config:
filter:
- match:
—_ llll@json:llll

Template

template t_demo_filetemplate {
template(
"SISODATE $HOST $MSG "

)

template_escape(

no
)
};

t_demo_filetemplate:
syslog_ng.config:

-config:
template:
- template:
- '"STISODATE S$HOST $MSG\n"'
- template_escape:
—_ Ilnoll
Rewrite

rewrite r_set_message_to_MESSAGE {
set(
"${.json.messagel}",

3.3. States

69

Salt Documentation, Release 2015.8.8

value ("S$SMESSAGE")
)3
}s

r_set_message_to_MESSAGE:
syslog_ng.config:
- config:
rewrite:
- set:
- '"${.json.message}"’
- value : '""SMESSAGE"'

Global options

options {
time_reap(30);
mark_freq(10);
keep_hostname(yes);

s

global_options:
syslog_ng.config:
- config:
options:
- time_reap: 30
- mark_freq: 10
- keep_hostname: "yes"

Log

log {
source(s_gsoc2014);
junction {
channel {
filter(f_json);
parser (p_json);
rewrite(r_set_json_tag);
rewrite(r_set_message_to_MESSAGE);
destination {
file(
"/tmp/json-input.log",
template(t_gsoc2014)
)
};
flags(final);
};
channel {
filter(f_not_json);
parser {
syslog-parser(

)5
15

rewrite(r_set_syslog_tag);

70 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

flags(final);
}s;
};
destination {
file(
"/tmp/all.log",
template(t_gsoc2014)
)
};
};

1_gsoc2014:
syslog_ng.config:
- config:
log:
- source: s_gsoc2014
- junction:
- channel:
- filter: f_json
- parser: p_json
- rewrite: r_set_json_tag
- rewrite: r_set_message_to_MESSAGE
- destination:
- file:
- '""/tmp/json-input.log"'
- template: t_gsoc2014
- flags: final
- channel:
- filter: f_not_json
- parser:
- syslog-parser: []
- rewrite: r_set_syslog_tag
- flags: final
- destination:
- file:
- "/tmp/all. log"
- template: t_gsoc2014

3.4 Advanced Topics

3.4.1 SaltStack Walk-through

Note: Welcome to SaltStack! I am excited that you are interested in Salt and starting down the path to better infras-
tructure management. I developed (and am continuing to develop) Salt with the goal of making the best software

available to manage computers of almost any kind. I hope you enjoy working with Salt and that the software can

solve your real world needs!
+ Thomas S Hatch
« Salt creator and Chief Developer
« CTO of SaltStack, Inc.

3.4. Advanced Topics

71

Salt Documentation, Release 2015.8.8

Getting Started

What is Salt?

Salt is a different approach to infrastructure management, founded on the idea that high-speed communication with
large numbers of systems can open up new capabilities. This approach makes Salt a powerful multitasking system
that can solve many specific problems in an infrastructure.

The backbone of Salt is the remote execution engine, which creates a high-speed, secure and bi-directional commu-
nication net for groups of systems. On top of this communication system, Salt provides an extremely fast, flexible,
and easy-to-use configuration management system called Salt States.

Installing Salt

SaltStack has been made to be very easy to install and get started. The installation documents contain instructions
for all supported platforms.

Starting Salt

Salt functions on a master/minion topology. A master server acts as a central control bus for the clients, which are
called minions. The minions connect back to the master.

Setting Up the Salt Master Turning on the Salt Master is easy -- just turn it on! The default configuration is suitable
for the vast majority of installations. The Salt Master can be controlled by the local Linux/Unix service manager:

On Systemd based platforms (OpenSuse, Fedora):

’systemctl start salt-master

On Upstart based systems (Ubuntu, older Fedora/RHEL):

‘service salt-master start

On SysV Init systems (Debian, Gentoo etc.):

‘ /etc/init.d/salt-master start

Alternatively, the Master can be started directly on the command-line:

’ salt-master -d

The Salt Master can also be started in the foreground in debug mode, thus greatly increasing the command output:

’salt—master -1 debug

The Salt Master needs to bind to two TCP network ports on the system. These ports are 4505 and 4506. For more
in depth information on firewalling these ports, the firewall tutorial is available here.

Setting up a Salt Minion

Note: The Salt Minion can operate with or without a Salt Master. This walk-through assumes that the minion will be
connected to the master, for information on how to run a master-less minion please see the master-less quick-start

guide:

Masterless Minion Quickstart

72 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

The Salt Minion only needs to be aware of one piece of information to run, the network location of the master.

By default the minion will look for the DNS name sa'lt for the master, making the easiest approach to set internal
DNS to resolve the name salt back to the Salt Master IP.

Otherwise, the minion configuration file will need to be edited so that the configuration option master points to
the DNS name or the IP of the Salt Master:

Note: The default location of the configuration files is /etc/salt. Most platforms adhere to this convention, but
platforms such as FreeBSD and Microsoft Windows place this file in different locations.

/etc/salt/minion:

’ master: saltmaster.example.com

Now that the master can be found, start the minion in the same way as the master; with the platform init system or
via the command line directly:

As a daemon:

‘salt—minion -d

In the foreground in debug mode:

’salt—m‘in‘ion -1 debug

When the minion is started, it will generate an 7d value, unless it has been generated on a previous run and cached in
the configuration directory, which is /etc/salt by default. This is the name by which the minion will attempt to
authenticate to the master. The following steps are attempted, in order to try to find a value that is not localhost:

1. The Python function socket.getfqdn() is run
2. /etc/hostname is checked (non-Windows only)

3. /etc/hosts (BWINDIR%\system32\drivers\etc\hosts on Windows hosts) is checked for host-
names that map to anything within 127.0.0.0/8.

If none of the above are able to produce an id which is not Localhost, then a sorted list of IP addresses on the
minion (excluding any within 127.0.0.0/8) is inspected. The first publicly-routable IP address is used, if there is one.
Otherwise, the first privately-routable IP address is used.

If all else fails, then Localhost is used as a fallback.

Note: Overriding the id

The minion id can be manually specified using the 1d parameter in the minion config file. If this configuration value
is specified, it will override all other sources for the id.

Now that the minion is started, it will generate cryptographic keys and attempt to connect to the master. The next
step is to venture back to the master server and accept the new minion's public key.

Using salt-key Salt authenticates minions using public-key encryption and authentication. For a minion to start
accepting commands from the master, the minion keys need to be accepted by the master.

The salt-key command is used to manage all of the keys on the master. To list the keys that are on the master:

salt-key -L

The keys that have been rejected, accepted, and pending acceptance are listed. The easiest way to accept the minion
key is to accept all pending keys:

3.4. Advanced Topics 73

Salt Documentation, Release 2015.8.8

salt-key -A

Note: Keys should be verified! Print the master key fingerprint by running salt-key -F master on the
Salt master. Copy the master.pub fingerprint from the Local Keys section, and then set this value as the mas-

ter_finger in the minion configuration file. Restart the Salt minion.

On the master, run salt-key —f minion-1id toprint the fingerprint of the minion's public key that was received
by the master. On the minion, run salt-call key.finger --Tlocal to print the fingerprint of the minion
key.

On the master:

salt-key -f foo.domain.com
Unaccepted Keys:
foo.domain.com: 39:f9:e4:8a:aa:74:8d:52:1a:ec:92:03:82:09:c8:f9

On the minion:

salt-call key.finger —--local
local:
39:f9:e4:8a:aa:74:8d:52:1a:ec:92:03:82:09:c8:f9

If they match, approve the key with salt-key -a foo.domain.com.

Sending the First Commands Now that the minion is connected to the master and authenticated, the master can
start to command the minion.

Salt commands allow for a vast set of functions to be executed and for specific minions and groups of minions to be
targeted for execution.

The salt command is comprised of command options, target specification, the function to execute, and arguments
to the function.

A simple command to start with looks like this:

salt '+x' test.ping

The * is the target, which specifies all minions.
test.ping tells the minion to run the test. ping function.

In the case of test.ping, test refers to a execution module. ping refers to the ping function contained in the
aforementioned test module.

Note: Execution modules are the workhorses of Salt. They do the work on the system to perform various tasks,
such as manipulating files and restarting services.

The result of running this command will be the master instructing all of the minions to execute test.ping in
parallel and return the result.

This is not an actual ICMP ping, but rather a simple function which returns True. Using test.ping is a good
way of confirming that a minion is connected.

Note: Each minion registers itself with a unique minion ID. This ID defaults to the minion's hostname, but can be
explicitly defined in the minion config as well by using the 1d parameter.

Of course, there are hundreds of other modules that can be called just as test. ping can. For example, the following
would return disk usage on all targeted minions:

74 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

salt '+' disk.usage

Getting to Know the Functions Salt comes with a vast library of functions available for execution, and Salt func-
tions are self-documenting. To see what functions are available on the minions execute the sys . doc function:

salt 'x' sys.doc

This will display a very large list of available functions and documentation on them.

Note: Module documentation is also available on the web.

These functions cover everything from shelling out to package management to manipulating database servers. They
comprise a powerful system management API which is the backbone to Salt configuration management and many
other aspects of Salt.

Note: Salt comes with many plugin systems. The functions that are available via the salt command are called
Execution Modules.

Helpful Functions to Know The cmd module contains functions to shell out on minions, such as cmd. run and
cmd. run_all:

‘salt 'x'" emd.run 'ls -1 /etc'

The pkg functions automatically map local system package managers to the same salt functions. This means that
pkg.install will install packages via yum on Red Hat based systems, apt on Debian systems, etc.:

‘salt 'x!' pkg.install vim

Note: Some custom Linux spins and derivatives of other distributions are not properly detected by Salt. If the above
command returns an error message saying that pkg.install is not available, then you may need to override the

pkg provider. This process is explained here.

The network. interfaces function will list all interfaces on a minion, along with their IP addresses, netmasks,
MAC addresses, etc:

salt 'x' network.interfaces

Changing the Output Format The default output format used for most Salt commands is called the nested out-
putter, but there are several other outputters that can be used to change the way the output is displayed. For instance,
the pprint outputter can be used to display the return data using Python's pprint module:

root@saltmaster:~# salt myminion grains.item pythonpath --out=pprint

{'myminion': {'pythonpath': ['/usr/1lib64/python2.7',
'/usr/lib/python2.7/plat-1linux2',
'/usr/1lib64/python2.7/1lib-tk"',
'/usr/lib/python2.7/1lib-tk",
'/usr/lib/python2.7/site-packages"',
'Jusr/lib/python2.7/site-packages/gst-0.10",
'/usr/lib/python2.7/site-packages/gtk-2.0"']}}

The full list of Salt outputters, as well as example output, can be found here.

3.4. Advanced Topics 75

Salt Documentation, Release 2015.8.8

salt-call The examples so far have described running commands from the Master using the salt command,
but when troubleshooting it can be more beneficial to login to the minion directly and use salt-call.

Doing so allows you to see the minion log messages specific to the command you are running (which are not part
of the return data you see when running the command from the Master using salt), making it unnecessary to tail
the minion log. More information on salt-call and how to use it can be found here.

Grains Salt uses a system called Grains to build up static data about minions. This data includes information about
the operating system that is running, CPU architecture and much more. The grains system is used throughout Salt
to deliver platform data to many components and to users.

Grains can also be statically set, this makes it easy to assign values to minions for grouping and managing.

A common practice is to assign grains to minions to specify what the role or roles a minion might be. These static
grains can be set in the minion configuration file or via the grains. setval function.

Targeting Salt allows for minions to be targeted based on a wide range of criteria. The default targeting system
uses globular expressions to match minions, hence if there are minions named larryl, larry2, curlyl, and
curly2,aglobof larry* will match larryl and larry2, and a glob of *1 will match larryl and curlyl.

Many other targeting systems can be used other than globs, these systems include:
Regular Expressions Target using PCRE-compliant regular expressions

Grains Target based on grains data: Targeting with Grains

Pillar Target based on pillar data: Targeting with Pillar

IP Target based on IP address/subnet/range

Compound Create logic to target based on multiple targets: Targeting with Compound
Nodegroup Target with nodegroups: Targeting with Nodegroup

The concepts of targets are used on the command line with Salt, but also function in many other areas as well,
including the state system and the systems used for ACLs and user permissions.

Passing in Arguments Many of the functions available accept arguments which can be passed in on the command
line:

salt 'x' pkg.install vim

This example passes the argument vim to the pkg.install function. Since many functions can accept more complex
input than just a string, the arguments are parsed through YAML, allowing for more complex data to be sent on the
command line:

salt '+x' test.echo 'foo: bar'

In this case Salt translates the string ‘foo: bar' into the dictionary **{'foo": “bar'}"

Note: Any line that contains a newline will not be parsed by YAML.

Salt States

Now that the basics are covered the time has come to evaluate States. Salt States, or the State Systemis
the component of Salt made for configuration management.

76 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

The state system is already available with a basic Salt setup, no additional configuration is required. States can be
set up immediately.

Note: Before diving into the state system, a brief overview of how states are constructed will make many of the
concepts clearer. Salt states are based on data modeling and build on a low level data structure that is used to execute

each state function. Then more logical layers are built on top of each other.

The high layers of the state system which this tutorial will cover consists of everything that needs to be known to
use states, the two high layers covered here are the sis layer and the highest layer highstate.

Understanding the layers of data management in the State System will help with understanding states, but they never
need to be used. Just as understanding how a compiler functions assists when learning a programming language,
understanding what is going on under the hood of a configuration management system will also prove to be a
valuable asset.

The First SLS Formula

The state system is built on SLS formulas. These formulas are built out in files on Salt's file server. To make a very
basic SLS formula open up a file under /srv/salt named vim.sls. The following state ensures that vim is installed on
a system to which that state has been applied.

/srv/salt/vim.sls:

vim:
pkg.installed

Now install vim on the minions by calling the SLS directly:

salt '+x' state.apply vim

This command will invoke the state system and run the vim SLS.
Now, to beef up the vim SLS formula, a vimrc can be added:

/srv/salt/vim.sls:

vim:
pkg.installed: []

/etc/vimrc:
file.managed:
- source: salt://vimrc
- mode: 644
- user: root
- group: root

Now the desired vimrc needs to be copied into the Salt file server to /srv/salt/vimrc. In Salt, everything is a
file, so no path redirection needs to be accounted for. The vimrc file is placed right next to the vim. sls file. The
same command as above can be executed to all the vim SLS formulas and now include managing the file.

Note: Salt does not need to be restarted/reloaded or have the master manipulated in any way when changing SLS
formulas. They are instantly available.

3.4. Advanced Topics 77

Salt Documentation, Release 2015.8.8

Adding Some Depth

Obviously maintaining SLS formulas right in a single directory at the root of the file server will not scale out to
reasonably sized deployments. This is why more depth is required. Start by making an nginx formula a better way,
make an nginx subdirectory and add an init.sls file:

/srv/salt/nginx/init.sls:

nginx:
pkg.installed: []
service.running:
- require:
- pkg: nginx

A few concepts are introduced in this SLS formula.
First is the service statement which ensures that the nginx service is running.

Of course, the nginx service can't be started unless the package is installed -- hence the require statement which
sets up a dependency between the two.

The require statement makes sure that the required component is executed before and that it results in success.

Note: The require option belongs to a family of options called requisites. Requisites are a powerful component of
Salt States, for more information on how requisites work and what is available see: Requisites

Also evaluation ordering is available in Salt as well: Ordering States

This new sls formula has a special name -- init.sls. When an SLS formula is named init.s'ls it inherits the
name of the directory path that contains it. This formula can be referenced via the following command:

salt 'x' state.apply nginx

Note: state.apply isjust another remote execution function, just like test.pingor disk. usage. It simply
takes the name of an SLS file as an argument.

Now that subdirectories can be used, the vim. sls formula can be cleaned up. To make things more flexible, move
the vim. sls and vimrc into a new subdirectory called edit and change the vim. sls file to reflect the change:

/srv/salt/edit/vim.sls:

vim:
pkg.installed

/etc/vimrc:
file.managed:
- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root

Only the source path to the vimrec file has changed. Now the formula is referenced as edit.vim because it resides
in the edit subdirectory. Now the edit subdirectory can contain formulas for emacs, nano, joe or any other editor
that may need to be deployed.

78 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Next Reading

Two walk-throughs are specifically recommended at this point. First, a deeper run through States, followed by an
explanation of Pillar.

1. Starting States
2. Pillar Walkthrough

An understanding of Pillar is extremely helpful in using States.

Getting Deeper Into States

Two more in-depth States tutorials exist, which delve much more deeply into States functionality.
1. How Do I Use Salt States?, covers much more to get off the ground with States.
2. The States Tutorial also provides a fantastic introduction.

These tutorials include much more in-depth information including templating SLS formulas etc.

So Much More!
This concludes the initial Salt walk-through, but there are many more things still to learn! These documents will
cover important core aspects of Salt:
« Pillar
+ Job Management
A few more tutorials are also available:
+ Remote Execution Tutorial
« Standalone Minion

This still is only scratching the surface, many components such as the reactor and event systems, extending Salt,
modular components and more are not covered here. For an overview of all Salt features and documentation, look
at the Table of Contents.

3.4.2 running salt as normal user tutorial

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Running Salt functions as non root user

If you don't want to run salt cloud as root or even install it you can configure it to have a virtual root in your working
directory.

The salt system uses the salt.syspath module to find the variables

If you run the salt-build, it will generated in:

3.4. Advanced Topics 79

https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2015.8.8

’ ./build/lib.linux-x86_64-2.7/salt/_syspaths.py ‘

To generate it, run the command:

’python setup.py build ‘

Copy the generated module into your salt directory

’cp ./build/lib.linux-x86_64-2.7/salt/_syspaths.py salt/_syspaths.py ‘

Edit it to include needed variables and your new paths

you need to edit this
ROOT_DIR = *your current dir* + '/salt/root'

you need to edit this
INSTALL_DIR = *location of source codex

CONFIG_DIR = ROOT_DIR + '/etc/salt'

CACHE_DIR = ROOT_DIR + '/var/cache/salt'

SOCK_DIR = ROOT_DIR + '/var/run/salt'

SRV_ROOT_DIR= ROOT_DIR + '/srv'

BASE_FILE_ROOTS_DIR = ROOT_DIR + '/srv/salt'
BASE_PILLAR_ROOTS_DIR = ROOT_DIR + '/srv/pillar'
BASE_MASTER_ROOTS_DIR = ROOT_DIR + '/srv/salt-master'
LOGS_DIR = ROOT_DIR + '/var/log/salt'

PIDFILE_DIR = ROOT_DIR + '/var/run'

CLOUD_DIR = INSTALL_DIR + '/cloud'

BOOTSTRAP = CLOUD_DIR + '/deploy/bootstrap-salt.sh'

Create the directory structure

mkdir -p root/etc/salt root/var/cache/run root/run/salt root/srv
root/srv/salt root/srv/pillar root/srv/salt-master root/var/log/salt root/var/run

Populate the configuration files:

‘cp -r conf/x root/etc/salt/ ‘

Edit your root/etc/salt/master configuration that is used by salt-cloud:

‘user: *xyour user namex ‘

Run like this:

‘ PYTHONPATH="pwd" scripts/salt-cloud ‘

3.4.3 MinionFS Backend Walkthrough
Propagating Files

New in version 2014.1.0.

Sometimes, one might need to propagate files that are generated on a minion. Salt already has a feature to send files
from a minion to the master.

80 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Enabling File Propagation

To enable propagation, the 1 le_recv option needs to be set to True.

‘ file_recv: True ‘

These changes require a restart of the master, then new requests for the salt://minion-1id/ protocol will send
files that are pushed by cp.push from minion-1d to the master.

‘salt 'minion-id' cp.push /path/to/the/file ‘

This command will store the file, including its full path, under cachedir /master/minions/minion-
id/files. With the default cachedir the example file above would be stored as
/var/cache/salt/master/minions/minion-id/files/path/to/the/file.

Note: This walkthrough assumes basic knowledge of Salt and cp. push. To get up to speed, check out the walk-
through.

MinionFS Backend

Since it is not a good idea to expose the whole cachedir, MinionFS should be used to send these files to other
minions.

Simple Configuration

To use the minionfs backend only two configuration changes are required on the master. The file-
server_backend option needs to contain a value of minion and file_recv needs to be set to true:

fileserver_backend:
- roots
- minion

file_recv: True

These changes require a restart of the master, then new requests for the salt://minion-1id/ protocol will send
files that are pushed by cp.push from minion--id to the master.

Note: All of the files that are pushed to the master are going to be available to all of the minions. If this is not what
you want, please remove minion from fileserver_backend in the master config file.

Note: Having directories with the same name as your minions in the root that can be accessed like
salt://minion-1id/ might cause confusion.

Commandline Example

Lets assume that we are going to generate SSH keys on a minion called minion-source and put the public part
in ~/.ssh/authorized_keys of root user of a minion called minion-destination.

First, lets make sure that /root/.ssh exists and has the right permissions:

[root@salt-master filel# salt '*' file.mkdir dir_path=/root/.ssh user=root group=root mq
minion-source:
None

3.4. Advanced Topics 81

de=700

Salt Documentation, Release 2015.8.8

minion-destination:
None

We create an RSA key pair without a passphrase *’:

[root@salt-master file]# salt 'minion-source' cmd.run 'ssh-keygen -N "" -f /root/.ssh/-d
minion-source:
Generating public/private rsa key pair.
Your tddentification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint 1s:
9b:cd:1c:b9:c2:93:8e:ad:a3:52:a0:8b:0a:cc:d4:9b root@minion-source
The key's randomart image is:

+--[RSA 2048]----+
I I
| |
| |
| o I
| oo S o |
|= + .Bo |
|o+ E B = |
[+ . .+ o |
|o 000 |
Fom +

and we send the public part to the master to be available to all minions:

[root@salt-master filel]# salt 'minion-source' cp.push /root/.ssh/id_rsa.pub
minion-source:
True

now it can be seen by everyone:

[root@salt-master filel]# salt 'minion-destination' cp.list_master_dirs
minion-destination:

- etc

- minion-source/root

- minion-source/root/.ssh

Lets copy that as the only authorized key to minion-destination:

[root@salt-master filel]# salt 'minion-destination' cp.get_file salt://minion-source/root
minion-destination:
/root/.ssh/authorized_keys

Or we can use a more elegant and salty way to add an SSH key:

[root@salt-master filel]# salt 'minion-destination' ssh.set_auth_key_ from_file user=root
minion-destination:
new

3.4.4 Automatic Updates / Frozen Deployments

New in version 0.10.3.d.

0 Yes, that was the actual key on my server, but the server is already destroyed.

82 Chapter 3. Tutorials

_rsa'

/.ssh/id_rsa.

source=salt:,

Salt Documentation, Release 2015.8.8

Salt has support for the Esky application freezing and update tool. This tool allows one to build a complete zipfile
out of the salt scripts and all their dependencies - including shared objects / DLLs.

Getting Started
To build frozen applications, suitable build environment will be needed for each platform. You should probably set
up a virtualenv in order to limit the scope of Q/A.

This process does work on Windows. Directions are available at https://github.com/saltstack/salt-windows-install
for details on installing Salt in Windows. Only the 32-bit Python and dependencies have been tested, but they have
been tested on 64-bit Windows.

Install bbfreeze, and then esky from PyPI in order to enable the bdist_esky command in setup.py. Salt
itself must also be installed, in addition to its dependencies.

Building and Freezing

Once you have your tools installed and the environment configured, use setup . py to prepare the distribution files.

python setup.py sdist
python setup.py bdist

Once the distribution files are in place, Esky can be used traverse the module tree and pack all the scripts up into a
redistributable.

python setup.py bdist_esky

There will be an appropriately versioned salt-VERSION. zip in dist/ if everything went smoothly.

Windows

C:\Python27\1lib\site-packages\zmq will need to be added to the PATH variable. This helps bbfreeze
find the zmq DLL so it can pack it up.

Using the Frozen Build

Unpack the zip file in the desired install location. Scripts like salt-minion and salt-call will be in the root
of the zip file. The associated libraries and bootstrapping will be in the directories at the same level. (Check the Esky
documentation for more information)

To support updating your minions in the wild, put the builds on a web server that the minions can reach.
salt.modules.saltutil.update () will trigger an update and (optionally) a restart of the minion service
under the new version.

Troubleshooting

A Windows minion isn't responding

The process dispatch on Windows is slower than it is on *nix. It may be necessary to add "-t 15' to salt commands to
give minions plenty of time to return.

3.4. Advanced Topics 83

https://github.com/cloudmatrix/esky
https://github.com/saltstack/salt-windows-install
https://github.com/cloudmatrix/esky

Salt Documentation, Release 2015.8.8

Windows and the Visual Studio Redist

The Visual C++ 2008 32-bit redistributable will need to be installed on all Windows minions. Esky has an op-
tion to pack the library into the zipfile, but OpenSSL does not seem to acknowledge the new location. If a no
OPENSSL_Applink error appears on the console when trying to start a frozen minion, the redistributable is not
installed.

Mixed Linux environments and Yum

The Yum Python module doesn't appear to be available on any of the standard Python package mirrors. If
RHEL/CentOS systems need to be supported, the frozen build should created on that platform to support all the
Linux nodes. Remember to build the virtualenv with ——system-site-packages so that the yum module is
included.

Automatic (Python) module discovery

Automatic (Python) module discovery does not work with the late-loaded scheme that Salt uses for (Salt) modules.
Any misbehaving modules will need to be explicitly added to the freezer_includes in Salt's setup.py. Al-
ways check the zipped application to make sure that the necessary modules were included.

3.4.5 Multi Master Tutorial

As of Salt 0.16.0, the ability to connect minions to multiple masters has been made available. The multi-master system
allows for redundancy of Salt masters and facilitates multiple points of communication out to minions. When using
a multi-master setup, all masters are running hot, and any active master can be used to send commands out to the
minions.

Note: If you need failover capabilities with multiple masters, there is also a MultiMaster-PKI setup available, that
uses a different topology MultiMaster-PKI with Failover Tutorial

In 0.16.0, the masters do not share any information, keys need to be accepted on both masters, and shared files need to
be shared manually or use tools like the git fileserver backend to ensure that the file_roots are kept consistent.

Summary of Steps

1. Create a redundant master server

2. Copy primary master key to redundant master

. Start redundant master

. Configure minions to connect to redundant master

. Restart minions

A W

. Accept keys on redundant master

Prepping a Redundant Master

The first task is to prepare the redundant master. If the redundant master is already running, stop it. There is only
one requirement when preparing a redundant master, which is that masters share the same private key. When the
first master was created, the master's identifying key pair was generated and placed in the master's pki_dir. The

84 Chapter 3. Tutorials

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2015.8.8

default location of the master's key pair is /etc/salt/pki/master/. Take the private key, master.pem,
and copy it to the same location on the redundant master. Do the same for the master's public key, master . pub.
Assuming that no minions have yet been connected to the new redundant master, it is safe to delete any existing
key in this location and replace it.

Note: There is no logical limit to the number of redundant masters that can be used.

Once the new key is in place, the redundant master can be safely started.

Configure Minions

Since minions need to be master-aware, the new master needs to be added to the minion configurations. Simply
update the minion configurations to list all connected masters:

master:
- saltmasterl.example.com
- saltmaster2.example.com

Now the minion can be safely restarted.

Note: 1If the ipc_mode for the minion is set to TCP (default in Windows), then each minion in the multi-minion
setup (one per master) needs its own tcp_pub_port and tcp_pull_port.

If these settings are left as the default 4510/4511, each minion object will receive a port 2 higher than the previous.
Thus the first minion will get 4510/4511, the second will get 4512/4513, and so on. If these port decisions are unac-
ceptable, you must configure tcp_pub_port and tcp_pull_port with lists of ports for each master. The length of these
lists should match the number of masters, and there should not be overlap in the lists.

Now the minions will check into the original master and also check into the new redundant master. Both masters
are first-class and have rights to the minions.

Note: Minions can automatically detect failed masters and attempt to reconnect to reconnect to them quickly. To
enable this functionality, set master_alive_interval in the minion config and specify a number of seconds to poll the

masters for connection status.

If this option is not set, minions will still reconnect to failed masters but the first command sent after a master comes
back up may be lost while the minion authenticates.

Sharing Files Between Masters

Salt does not automatically share files between multiple masters. A number of files should be shared or sharing of
these files should be strongly considered.

Minion Keys

Minion keys can be accepted the normal way using salt-key on both masters. Keys ac-
cepted, deleted, or rejected on one master will NOT be automatically managed on redundant
masters; this needs to be taken care of by running salt-key on both masters or sharing the
/etc/salt/pki/master/{minions,minions_pre,minions_rejected} directories between mas-
ters.

Note: While sharing the /etc/salt/pki/master directory will work, it is strongly discouraged, since allowing access
to the master.pem key outside of Salt creates a SERIOUS security risk.

3.4. Advanced Topics 85

Salt Documentation, Release 2015.8.8

File_Roots

The file_roots contents should be kept consistent between masters. Otherwise state runs will not always be
consistent on minions since instructions managed by one master will not agree with other masters.

The recommended way to sync these is to use a fileserver backend like gitfs or to keep these files on shared storage.

Important: If using gitfs/git_pillar with the cachedir shared between masters using GlusterFS, nfs, or another
network filesystem, and the masters are running Salt 2015.5.9 or later, it is strongly recommended not to turn off

gitfs_global_lock/git_pillar_global_Tlock asdoingsowill cause lock files to be removed if they were
created by a different master.

Pillar_Roots

Pillar roots should be given the same considerations as file_roots.

Master Configurations

While reasons may exist to maintain separate master configurations, it is wise to remember that each master main-
tains independent control over minions. Therefore, access controls should be in sync between masters unless a valid
reason otherwise exists to keep them inconsistent.

These access control options include but are not limited to:
. external auth
« client_acl
+ peer

e peer_run

3.4.6 Multi-Master-PKI Tutorial With Failover
This tutorial will explain, how to run a salt-environment where a single minion can have multiple masters and
fail-over between them if its current master fails.
The individual steps are
« setup the master(s) to sign its auth-replies
« setup minion(s) to verify master-public-keys
« enable multiple masters on minion(s)
« enable master-check on minion(s)

Please note, that it is advised to have good knowledge of the salt- authentication and
communication-process to understand this tutorial. All of the settings described here, go on top
of the default authentication/communication process.

86 Chapter 3. Tutorials

http://www.gluster.org/

Salt Documentation, Release 2015.8.8

Motivation

The default behaviour of a salt-minion is to connect to a master and accept the masters public key. With each
publication, the master sends his public-key for the minion to check and if this public-key ever changes, the minion
complains and exits. Practically this means, that there can only be a single master at any given time.

Would it not be much nicer, if the minion could have any number of masters (1:n) and jump to the next master if its
current master died because of a network or hardware failure?

Note: There is also a MultiMaster-Tutorial with a different approach and topology than this one, that might also
suite your needs or might even be better suited Multi-Master Tutorial

It is also desirable, to add some sort of authenticity-check to the very first public key a minion receives from a master.
Currently a minions takes the first masters public key for granted.

The Goal

Setup the master to sign the public key it sends to the minions and enable the minions to verify this signature for
authenticity.

Prepping the master to sign its public key

For signing to work, both master and minion must have the signing and/or verification settings enabled. If the master
signs the public key but the minion does not verify it, the minion will complain and exit. The same happens, when
the master does not sign but the minion tries to verify.

The easiest way to have the master sign its public key is to set

master_sign_pubkey: True

After restarting the salt-master service, the master will automatically generate a new key-pair

master_sign.pem
master_sign.pub

A custom name can be set for the signing key-pair by setting

master_sign_key_name: <name_without_suffix>

The master will then generate that key-pair upon restart and use it for creating the public keys signature attached
to the auth-reply.

The computation is done for every auth-request of a minion. If many minions auth very often, it is advised to use
conf_master:master_pubkey_signature and conf_master:master_use_pubkey_signature settings described below.

If multiple masters are in use and should sign their auth-replies, the signing key-pair master_sign.* has to be copied
to each master. Otherwise a minion will fail to verify the masters public when connecting to a different master than
it did initially. That is because the public keys signature was created with a different signing key-pair.

Prepping the minion to verify received public keys

The minion must have the public key (and only that one!) available to be able to verify a signature it receives. That
public key (defaults to master_sign.pub) must be copied from the master to the minions pki-directory.

3.4. Advanced Topics 87

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

Salt Documentation, Release 2015.8.8

/etc/salt/pki/minion/master_sign.pub

DO NOT COPY THE master_sign.pem FILE. IT MUST STAY ON THE MASTER AND
ONLY THERE!

When that is done, enable the signature checking in the minions configuration

’ver'ify_master_pubkey_s*ign: True ‘

and restart the minion. For the first try, the minion should be run in manual debug mode.

’$ salt-minion -1 debug ‘

Upon connecting to the master, the following lines should appear on the output:

[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[INFO

[DEBUG

Sy T Y Ty Y |

Attempting to authenticate with the Salt Master at 172.16.0.10
Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Successfully verified signature of master public key with verification publig¢

Received signed and verified master pubkey from master 172.16.0.10

Decrypting the current master AES key

If the signature verification fails, something went wrong and it will look like this

[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[CRITICAL

e e

Attempting to authenticate with the Salt Master at 172.16.0.10
Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Failed to verify signature of public key

The Salt Master server's public key did not authenticate!

In a case like this, it should be checked, that the verification pubkey (master_sign.pub) on the minion is the same as
the one on the master.

Once the verification is successful, the minion can be started in daemon mode again.

For the paranoid among us, its also possible to verify the publication whenever it is received from the master. That
is, for every single auth-attempt which can be quite frequent. For example just the start of the minion will force the
signature to be checked 6 times for various things like auth, mine, highstate, etc.

If that is desired, enable the setting

always_verify_signature: True

Multiple Masters For A Minion

Configuring multiple masters on a minion is done by specifying two settings:

« alist of masters addresses

« what type of master is defined

master:
- 172.16.0.10
- 172.16.0.11
- 172.16.0.12
88 Chapter 3. Tutorials

key master_:

Salt Documentation, Release 2015.8.8

‘master_type: failover ‘

This tells the minion that all the master above are available for it to connect to. When started with this configuration,
it will try the master in the order they are defined. To randomize that order, set

’master_shuffle: True ‘

The master-list will then be shuffled before the first connection attempt.

The first master that accepts the minion, is used by the minion. If the master does not yet know the minion, that
counts as accepted and the minion stays on that master.

For the minion to be able to detect if its still connected to its current master enable the check for it

master_alive_interval: <seconds>

If the loss of the connection is detected, the minion will temporarily remove the failed master from the list and try
one of the other masters defined (again shuffled if that is enabled).

Testing the setup

At least two running masters are needed to test the failover setup.

Both masters should be running and the minion should be running on the command line in debug mode

$ salt-minion -1 debug

The minion will connect to the first master from its master list

[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[INFO

[DEBUG

[N Y YN '

Attempting to authenticate with the Salt Master at 172.16.0.10
Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Successfully verified signature of master public key with verification public

Received signed and verified master pubkey from master 172.16.0.10
Decrypting the current master AES key

A test.ping on the master the minion is currently connected to should be run to test connectivity.

If successful, that master should be turned off. A firewall-rule denying the minions packets will also do the trick.

Depending on the configured conf_minion:master_alive_interval, the minion will notice the loss of the connection
and log it to its logfile.

[INFO
[INFO

1
]

Connection to master 172.16.0.10 lost
Trying to tune in to next master from master-list

The minion will then remove the current master from the list and try connecting to the next master

[INFO

[DEBUG

1
]

Removing possibly failed master 172.16.0.10 from list of masters

[WARNING | Master ip address changed from 172.16.0.10 to 172.16.0.11

Attempting to authenticate with the Salt Master at 172.16.0.11

If everything is configured correctly, the new masters public key will be verified successfully

[DEBUG
[DEBUG
[DEBUG
[DEBUG

1
]
]
1

Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Successfully verified signature of master public key with verification publig¢

3.4. Advanced Topics 89

key master_:

key master_:

Salt Documentation, Release 2015.8.8

the authentication with the new master is successful

[INFO] Received signed and verified master pubkey from master 172.16.0.11
[DEBUG] Decrypting the current master AES key

[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem

[INFO] Authentication with master successful!

and the minion can be pinged again from its new master.

Performance Tuning
With the setup described above, the master computes a signature for every auth-request of a minion. With many
minions and many auth-requests, that can chew up quite a bit of CPU-Power.

To avoid that, the master can use a pre-created signature of its public-key. The signature is saved as a base64 encoded
string which the master reads once when starting and attaches only that string to auth-replies.

Enabling this also gives paranoid users the possibility, to have the signing key-pair on a different system than the
actual salt-master and create the public keys signature there. Probably on a system with more restrictive firewall
rules, without internet access, less users, etc.

That signature can be created with

’$ salt-key --gen-signature

This will create a default signature file in the master pki-directory

‘ /etc/salt/pki/master/master_pubkey_signature

It is a simple text-file with the binary-signature converted to base64.

If no signing-pair is present yet, this will auto-create the signing pair and the signature file in one call

’$ salt-key --gen-signature --auto-create

Telling the master to use the pre-created signature is done with

’ master_use_pubkey_signature: True

That requires the file ‘master_pubkey_signature' to be present in the masters pki-directory with the correct signature.

If the signature file is named differently, its name can be set with

master_pubkey_signature: <filename>

With many masters and many public-keys (default and signing), it is advised to use the salt-masters hostname for
the signature-files name. Signatures can be easily confused because they do not provide any information about the
key the signature was created from.

Verifying that everything works is done the same way as above.

How the signing and verification works

The default key-pair of the salt-master is

/etc/salt/pki/master/master.pem
/etc/salt/pki/master/master.pub

920 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

To be able to create a signature of a message (in this case a public-key), another key-pair has to be added to the setup.
Its default name is:

master_sign.pem
master_sign.pub

The combination of the master” and master_sign” key-pairs give the possibility of generating signatures. The sig-
nature of a given message is unique and can be verified, if the public-key of the signing-key-pair is available to the
recipient (the minion).

The signature of the masters public-key in master.pub is computed with

master_sign.pem
master.pub
M2Crypto.EVP.sign_update()

This results in a binary signature which is converted to base64 and attached to the auth-reply send to the minion.

With the signing-pairs public-key available to the minion, the attached signature can be verified with

master_sign.pub
master.pub
M2Cryptos EVP.verify_update().

When running multiple masters, either the signing key-pair has to be present on all of them, or the mas-
ter_pubkey_signature has to be pre-computed for each master individually (because they all have different public-
keys).

DO NOT PUT THE SAME master.pub ON ALL MASTERS FOR EASE OF USE.

3.4.7 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to to let your
developers provision new development machines on the fly.

See also:

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.
salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST API to generate and download the new minion keys as
a tarball.

There is a general four step process to do this:

1. Generate the keys on the master:

root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

2. Add the public key to the accepted minion folder:

root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

It is necessary that the public key file has the same name as your minion id. This is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3.4. Advanced Topics 91

Salt Documentation, Release 2015.8.8

3. Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is finding a distribution method
which is secure. For Amazon EC2 only, an AWS best practice is to use IAM Roles to pass credentials.
(See blog post, http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-
AWS-credentials-to-your-EC2-instances)

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.apply or any other salt
commands that require master authentication.

3.4.8 Salt Bootstrap

The Salt Bootstrap script allows for a user to install the Salt Minion or Master on a variety of system distributions
and versions. This shell script known as bootstrap-salt.sh runs through a series of checks to determine
the operating system type and version. It then installs the Salt binaries using the appropriate methods. The Salt
Bootstrap script installs the minimum number of packages required to run Salt. This means that in the event you
run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages helps
ensure the script stays as lightweight as possible, assuming the user will install any other required packages after the
Salt binaries are present on the system. The script source is available on GitHub: https://github.com/saltstack/salt-
bootstrap

Supported Operating Systems

Note: In the event you do not see your distribution or version available please review the develop branch on
GitHub as it main contain updates that are not present in the stable release: https://github.com/saltstack/salt-

bootstrap/tree/develop

Debian and derivatives

« Debian GNU/Linux 7/8
« Linux Mint Debian Edition 1 (based on Debian 8)
« Kali Linux 1.0 (based on Debian 7)

Red Hat family

« Amazon Linux 2012.09/2013.03/2013.09/2014.03/2014.09
« CentOS 5/6/7

92 Chapter 3. Tutorials

http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/tree/develop
https://github.com/saltstack/salt-bootstrap/tree/develop

Salt Documentation, Release 2015.8.8

Fedora 17/18/20/21/22
+ Oracle Linux 5/6/7
« Red Hat Enterprise Linux 5/6/7

« Scientific Linux 5/6/7

SUSE family

openSUSE 12/13

openSUSE Leap 42

openSUSE Tumbleweed 2015
« SUSE Linux Enterprise Server 11 SP1/11 SP2/11 SP3/12

Ubuntu and derivatives

« Elementary OS 0.2 (based on Ubuntu 12.04)
« Linaro 12.04

« Linux Mint 13/14/16/17

Trisquel GNU/Linux 6 (based on Ubuntu 12.04)
Ubuntu 10.x/11.x/12.x/13.x/14.x/15.04

Other Linux distro

« Arch Linux

« Gentoo

UNIX systems

BSD:
« OpenBSD (pip installation)
« FreeBSD 9/10/11

SunOS:
« SmartOS

Example Usage

If you're looking for the one-liner to install Salt, please scroll to the bottom and use the instructions for Installing via
an Insecure One-Liner

Note: In every two-step example, you would be well-served to examine the downloaded file and examine it to
ensure that it does what you expect.

3.4. Advanced Topics 93

Salt Documentation, Release 2015.8.8

The Salt Bootstrap script has a wide variety of options that can be passed as well as several ways of obtaining the
bootstrap script itself.

Note: These examples below show how to bootstrap Salt directly from GitHub or other Git repository. Run the
script without any parameters to get latest stable Salt packages for your system from SaltStack corporate repository.

See first example in the Install using wget section.

Install using curl

Using curl to install latest development version from GitHub:

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh git develop

If you want to install a specific release version (based on the Git tags):

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh git v2015.8.8

To install a specific branch from a Git fork:

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -g https://github.com/myuser/salt.git git mybranch

If all you want is to install a salt-master using latest Git:

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -M -N git develop

If your host has Internet access only via HTTP proxy:

PROXY="http://user:password@myproxy.example.com:3128"'
curl -o bootstrap_salt.sh -L -x "$PROXY" https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -G -H "$PROXY" git

Install using wget

Using wget to install your distribution's stable packages:

wget -0 bootstrap_salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh

Downloading the script from develop branch:

wget https://bootstrap.saltstack.com/develop
sudo sh bootstrap_salt.sh

Installing a specific version from git using wget:

wget -0 bootstrap_salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -P git v2015.8.8

Note: On the above example we added -P which will allow PIP packages to be installed if required but it's not a
necessary flag for Git based bootstraps.

94 Chapter 3. Tutorials

https://repo.saltstack.com/

Salt Documentation, Release 2015.8.8

Install using Python

If you already have Python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" > bootstrap_salt.sh
sudo sh bootstrap_salt.sh git develop

All Python versions should support the following in-line code:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read()' > bootstraj
sudo sh bootstrap_salt.sh git develop

Install using fetch

On a FreeBSD base system you usually don't have either of the above binaries available. You do have fetch available
though:

fetch -o bootstrap_salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh

If you have any SSL issues install ca_root_nssp:

‘pkg install ca_root_nssp ‘

And either copy the certificates to the place where fetch can find them:

‘cp /usr/local/share/certs/ca-root-nss.crt /etc/ssl/cert.pem ‘

Or link them to the right place:

’ln -s /usr/local/share/certs/ca-root-nss.crt /etc/ssl/cert.pem ‘

Installing via an Insecure One-Liner

The following examples illustrate how to install Salt via a one-liner.

Note: Warning! These methods do not involve a verification step and assume that the delivered file is trustworthy.

Any of the example above which use two-lines can be made to run in a single-line configuration with minor modi-
fications.

For example, using curl to install your distribution's stable packages:

’curl -L https://bootstrap.saltstack.com | sudo sh ‘

Using wget to install your distribution's stable packages:

‘wget -0 - https://bootstrap.saltstack.com | sudo sh ‘

Installing the latest develop branch of Salt:

‘curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop ‘

3.4. Advanced Topics 95

Salt Documentation, Release 2015.8.8

Command Line Options

Here's a summary of the command line options:

$

sh bootstrap-salt.sh -h

Usage : bootstrap-salt.sh [options] <install-type> <install-type-args>

Installation types:

stable (default)

stable [version] (ubuntu specific)
daily (ubuntu specific)

testing (redhat specific)

git

Examples:

bootstrap-salt.sh

bootstrap-salt.sh stable

bootstrap-salt.sh stable 2014.7

bootstrap-salt.sh daily

bootstrap-salt.sh testing

bootstrap-salt.sh git

bootstrap-salt.sh git develop

bootstrap-salt.sh git v0.17.0

bootstrap-salt.sh git 8c3fadfl5ec183e5ce8c63739850d543617e4357

Options:

-h Display this message

-v Display script version

-n No colours.

-D Show debug output.

-c Temporary configuration directory

-g Salt repository URL. (default: git://github.com/saltstack/salt.git)

-G Instead of cloning from git://github.com/saltstack/salt.git, clone from https://gT

-k Temporary directory holding the minion keys which will pre-seed
the master.

-s Sleep time used when waiting for daemons to start, restart and when checking
for the services running. Default: 3

-M Also install salt-master

-S Also 1install salt-syndic

-N Do not install salt-minion

-X Do not start daemons after dinstallation

-C Only run the configuration function. This option automatically
bypasses any installation.

-P Allow pip based installations. On some distributions the required salt
packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last
resort method. NOTE: This only works for functions which actually
implement pip based installations.

-F Allow copied files to overwrite existing(config, init.d, etc)

-U If set, fully upgrade the system prior to bootstrapping salt

-K If set, keep the temporary files 1in the temporary directories specified
with -c and -k.

-I 1If set, allow insecure connections while downloading any files. For
example, pass '--no-check-certificate' to 'wget' or '--insecure' to 'curl'

-A Pass the salt-master DNS name or IP. This will be stored under

${BS_SALT_ETC_DIR}/minion.d/99-master-address.conf
Pass the salt-minion id. This will be stored under
${BS_SALT_ETC_DIR}/minion_id

96

Chapter 3. Tutorials

thub.com/sal

Salt Documentation, Release 2015.8.8

-L Install the Apache Libcloud package if possible(required for salt-cloud)
-p Extra-package to install while installing salt dependencies. One package
per -p flag. You're responsible for providing the proper package name.
-d Disable check_service functions. Setting this flag disables the
"install_<distro>_check_services' checks. You can also do this by
touching /tmp/disable_salt_checks on the target host. Defaults ${BS_FALSE}
-H Use the specified http proxy for the +dinstallation
-Z Enable external software source for newer ZeroMQ(Only available for RHEL/CentOS/Fe
-b Assume that dependencies are already 1installed and software sources are set up.
If git is selected, git tree is still checked out as dependency step.

rdora/Ubuntu |

3.4.9 Git Fileserver Backend Walkthrough

Note: This walkthrough assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

The gitfs backend allows Salt to serve files from git repositories. It can be enabled by adding git to the file-
server_backend list, and configuring one or more repositories in gitfs_remotes.

Branches and tags become Salt fileserver environments.

Installing Dependencies
Beginning with version 2014.7.0, both pygit2 and Dulwich are supported as alternatives to GitPython. The desired
provider can be configured using the g1t fs_provider parameter in the master config file.

If gitfs_provider is not configured, then Salt will prefer pygit2 if a suitable version is available, followed by
GitPython and Dulwich.

Note: It is recommended to always run the most recent version of any the below dependencies. Certain features of
gitfs may not be available without the most recent version of the chosen library.

pysgit2
The minimum supported version of pygit2 is 0.20.3. Availability for this version of pygit2 is still limited, though the
SaltStack team is working to get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the following command would be used
to install pygit2:

’# yum install python-pygit2 ‘

Provided a valid version is packaged for Debian/Ubuntu (which is not currently the case), the package name would
be the same, and the following command would be used to install it:

‘# apt-get install python-pygit2 ‘

If pygit2 is not packaged for the platform on which the Master is running, the pygit2 website has installation instruc-
tions here. Keep in mind however that following these instructions will install libgit2 and pygit2 without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 (not libssh) development
libraries to be present before libgit2 is built. On some Debian-based distros pkg—-config is also required to link
libgit2 with libssh2.

3.4. Advanced Topics 97

https://github.com/libgit2/pygit2
https://www.samba.org/~jelmer/dulwich/
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://www.samba.org/~jelmer/dulwich/
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
http://www.pygit2.org/install.html
https://libgit2.github.com/
https://github.com/libgit2/pygit2
http://www.libssh2.org/
https://libgit2.github.com/
https://libgit2.github.com/

Salt Documentation, Release 2015.8.8

Additionally, version 0.21.0 of pygit2 introduced a dependency on python-cffi, which in turn depends on newer
releases of libffi. Upgrading libffi is not advisable as several other applications depend on it, so on older LTS linux
releases pygit2 0.20.3 and libgit2 0.20.0 is the recommended combination. While these are not packaged in the official
repositories for Debian and Ubuntu, SaltStack is actively working on adding packages for these to our repositories.
The progress of this effort can be tracked here.

Warning: pygit2 is actively developed and frequently makes non-backwards-compatible API changes, even
in minor releases. It is not uncommon for pygit2 upgrades to result in errors in Salt. Please take care when
upgrading pygit2, and pay close attention to the changelog, keeping an eye out for API changes. Errors can be
reported on the SaltStack issue tracker.

GitPython

GitPython 0.3.0 or newer is required to use GitPython for gitfs. For RHEL-based Linux distros, a compatible version
is available in EPEL, and can be easily installed on the master using yum:

‘# yum install GitPython

Ubuntu 14.04 LTS and Debian Wheezy (7.x) also have a compatible version packaged:

‘# apt-get install python-git

If your master is running an older version (such as Ubuntu 12.04 LTS or Debian Squeeze), then you will need to install
GitPython using either pip or easy_install (it is recommended to use pip). Version 0.3.2.RC1 is now marked as the
stable release in PyPI, so it should be a simple matter of running pip install GitPython (oreasy_install
GitPython) as root.

Warning: Keep in mind that if GitPython has been previously installed on the master using pip (even if
it was subsequently uninstalled), then it may still exist in the build cache (typically /tmp/pip-build-
root/GitPython) if the cache is not cleared after installation. The package in the build cache will override
any requirement specifiers, so if you try upgrading to version 0.3.2.RC1 by running pip install 'Git-
Python==0.3.2.RC1"' then it will ignore this and simply install the version from the cache directory. There-
fore, it may be necessary to delete the GitPython directory from the build cache in order to ensure that the
specified version is installed.

Dulwich

Dulwich 0.9.4 or newer is required to use Dulwich as backend for gitfs.

Dulwich is available in EPEL, and can be easily installed on the master using yum:

‘# yum install python-dulwich

For APT-based distros such as Ubuntu and Debian:

‘# apt-get install python-dulwich

Important: If switching to Dulwich from GitPython/pygit2, or switching from GitPython/pygit2 to Dulwich, it is
necessary to clear the gitfs cache to avoid unpredictable behavior. This is probably a good idea whenever switching

toanew gitfs_provider,but it is less important when switching between GitPython and pygit2.

Beginning in version 2015.5.0, the gitfs cache can be easily cleared using the fileserver.clear_cache runner.

98 Chapter 3. Tutorials

https://pypi.python.org/pypi/cffi
http://sourceware.org/libffi/
http://sourceware.org/libffi/
https://github.com/libgit2/pygit2
https://libgit2.github.com/
https://repo.saltstack.com
https://github.com/saltstack/salt-pack/issues/70
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2#changelog
https://github.com/gitpython-developers/GitPython
http://www.pip-installer.org/

Salt Documentation, Release 2015.8.8

’salt—run fileserver.clear_cache backend=git

If the Master is running an earlier version, then the cache can be cleared by removing the gitfs
and file_lists/gitfs directories (both paths relative to the master cache directory, usually
/var/cache/salt/master).

‘rm -rf /var/cache/salt/master{,/file_lists}/gitfs

Simple Configuration

To use the gitfs backend, only two configuration changes are required on the master:

1. Include git inthe fileserver_backend list in the master config file:

fileserver_backend:
- git

2. Specify one or more git://, https://, file://,or ssh:// URLsin gitfs_remotes to configure
which repositories to cache and search for requested files:

gitfs_remotes:
- https://github.com/saltstack-formulas/salt-formula.git

SSH remotes can also be configured using scp-like syntax:

gitfs_remotes:
- git@github.com:user/repo.git
- ssh://user@domain.tld/path/to/repo.git

Information on how to authenticate to SSH remotes can be found here.

Note: Dulwich does not recognize ssh:// URLs, git+ssh:// must be used instead. Salt version 2015.5.0
and later will automatically add the git+ to the beginning of these URLs before fetching, but earlier Salt

versions will fail to fetch unless the URL is specified using git+ssh://.

3. Restart the master to load the new configuration.

Note: In a master/minion setup, files from a gitfs remote are cached once by the master, so minions do not need
direct access to the git repository.

Multiple Remotes

The gitfs_remotes option accepts an ordered list of git remotes to cache and search, in listed order, for requested
files.

A simple scenario illustrates this cascading lookup behavior:

If the gitfs_remotes option specifies three remotes:

gitfs_remotes:
- git://github.com/example/first.git
- https://github.com/example/second.git
- file:///root/third

3.4. Advanced Topics 99

Salt Documentation, Release 2015.8.8

And each repository contains some files:

first.git:
top.sls
edit/vim.sls
edit/vimrc
nginx/init.sls

second.git:
edit/dev_vimrc
haproxy/init.sls

third:
haproxy/haproxy.conf
edit/dev_vimrc

Salt will attempt to lookup the requested file from each gitfs remote repository in the order in which they are defined
in the configuration. The git://github.com/example/first.git remote will be searched first. If the requested file is
found, then it is served and no further searching is executed. For example:

« A request for the file salt://haproxy/init.sls will be served from the https://github.com/example/second.git
git repo.

« A request for the file salt://haproxy/haproxy.conf will be served from the file:///root/third repo.

Note: This example is purposefully contrived to illustrate the behavior of the gitfs backend. This example should
not be read as a recommended way to lay out files and git repos.

The file:// prefix denotes a git repository in a local directory. However, it will still use the given file:// URL as a
remote, rather than copying the git repo to the salt cache. This means that any refs you want accessible must exist
as local refs in the specified repo.

Warning: Salt versions prior to 2014.1.0 are not tolerant of changing the order of remotes or modifying the
URI of existing remotes. In those versions, when modifying remotes it is a good idea to remove the gitfs cache
directory (/var/cache/salt/master/gitfs) before restarting the salt-master service.

Per-remote Configuration Parameters

New in version 2014.7.0.
The following master config parameters are global (that is, they apply to all configured gitfs remotes):
. gitfs_base
« gitfs_root
« gitfs_mountpoint (new in 2014.7.0)
« gitfs_user (pygit2 only, new in 2014.7.0)
. gitfs_password (pygit2 only, new in 2014.7.0)
« gitfs_insecure_auth (pygit2 only, new in 2014.7.0)
. gitfs_pubkey (pygit2 only, new in 2014.7.0)
- gitfs_privkey (pygit2 only, new in 2014.7.0)
« gitfs_passphrase (pygit2 only, new in 2014.7.0)

100 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

These parameters can now be overridden on a per-remote basis. This allows for a tremendous amount of customiza-

tion.

Here's some example usage:

gitfs_provider: pygit2
gitfs_base: develop

gitfs_remotes:

https://foo.com/foo.git
https://foo.com/bar.git:

- root: salt

- mountpoint: salt://bar

- base: salt-base
https://foo.com/bar.git:

- name: second_bar_repo

- root: other/salt

- mountpoint: salt://other/bar
- base: salt-base
http://foo.com/baz.git:

- root: salt/states

- user: joe

- password: mysupersecretpassword
- insecure_auth: True

Important: There are two important distinctions which should be noted for per-remote configuration:

1.

2.

The URL of a remote which has per-remote configuration must be suffixed with a colon.

Per-remote configuration parameters are named like the global versions, with the gitfs_ removed from the
beginning. The exception being the name parameter which is only available to per-remote configurations.

In the example configuration above, the following is true:

1.

The first and fourth gitfs remotes will use the develop branch/tag as the base environment, while the
second and third will use the salt-base branch/tag as the base environment.

. The first remote will serve all files in the repository. The second remote will only serve files from the salt

directory (and its subdirectories). The third remote will only server files from the other/salt directory
(and its subdirectorys), while the fourth remote will only serve files from the salt/states directory (and
its subdirectories).

. The first and fourth remotes will have files located under the root of the Salt fileserver namespace (salt://).

The files from the second remote will be located under salt://bar, while the files from the third remote
will be located under salt://other/bar.

. The second and third remotes reference the same repository and unique names need to be declared for duplicate

gitfs remotes.

. The fourth remote overrides the default behavior of not authenticating to insecure (non-HTTPS) remotes.

Serving from a Subdirectory

The gitfs_root parameter allows files to be served from a subdirectory within the repository. This allows for
only part of a repository to be exposed to the Salt fileserver.

Assume the below layout:

.gitignore
README. txt

foo/

3.4. Advanced Topics 101

Salt Documentation, Release 2015.8.8

foo/bar/
foo/bar/one.txt
foo/bar/two.txt
foo/bar/three.txt
foo/baz/
foo/baz/top.sls
foo/baz/edit/vim.sls
foo/baz/edit/vimrc
foo/baz/nginx/init.sls

The below configuration would serve only the files under foo/baz, ignoring the other files in the repository:

gitfs_remotes:
- git://mydomain.com/stuff.git

gitfs_root: foo/baz

The root can also be configured on a per-remote basis.

Mountpoints

New in version 2014.7.0.

The gitfs_mountpoint parameter will prepend the specified path to the files served from gitfs. This allows an
existing repository to be used, rather than needing to reorganize a repository or design it around the layout of the
Salt fileserver.

Before the addition of this feature, if a file being served up via gitfs was deeply nested within the root directory (for
example, salt://webapps/foo/files/foo.conf,it would be necessary to ensure that the file was properly
located in the remote repository, and that all of the the parent directories were present (for example, the directories
webapps/foo/files/ would need to exist at the root of the repository).

The below example would allow for a file foo.conf at the root of the repository to be served up from the Salt
fileserver path salt://webapps/foo/files/foo.conf

gitfs_remotes:
- https://mydomain.com/stuff.git

gitfs_mountpoint: salt://webapps/foo/files

Mountpoints can also be configured on a per-remote basis.

Using gitfs Alongside Other Backends
Sometimes it may make sense to use multiple backends; for instance, if s's files are stored in git but larger files are
stored directly on the master.

The cascading lookup logic used for multiple remotes is also used with multiple backends. If the file-
server_backend option contains multiple backends:

fileserver_backend:
- roots
- git

Then the roots backend (the default backend of files in /srv/salt) will be searched first for the requested file;
then, if it is not found on the master, each configured git remote will be searched.

102 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Branches, Environments, and Top Files

When using the gitfs backend, branches, and tags will be mapped to environments using the branch/tag name as an
identifier.

There is one exception to this rule: the master branch is implicitly mapped to the base environment.

So, for a typical base, ga, dev setup, the following branches could be used:

master

ga
dev

top. sls files from different branches will be merged into one at runtime. Since this can lead to overly complex
configurations, the recommended setup is to have a separate repository, containing only the top. sls file with just
one single master branch.

To map a branch other than master as the base environment, use the gitfs_base parameter.

gitfs_base: salt-base

The base can also be configured on a per-remote basis.

Environment Whitelist/Blacklist

New in version 2014.7.0.

The gitfs_env_whitelist and gitfs_env_blacklist parameters allow for greater control over which
branches/tags are exposed as fileserver environments. Exact matches, globs, and regular expressions are supported,
and are evaluated in that order. If using a regular expression, » and $ must be omitted, and the expression must
match the entire branch/tag.

gitfs_env_whitelist:
- base
- vl.*
- "mybranch\d+'

Note: v1.*,in this example, will match as both a glob and a regular expression (though it will have been matched
as a glob, since globs are evaluated before regular expressions).

The behavior of the blacklist/whitelist will differ depending on which combination of the two options is used:

« Ifonlygitfs_env_whitelist isused, then only branches/tags which match the whitelist will be available
as environments

« Ifonlygitfs_env_blacklist isused, then the branches/tags which match the blacklist will not be avail-
able as environments

« If both are used, then the branches/tags which match the whitelist, but do not match the blacklist, will be
available as environments.

Authentication
pygit2

New in version 2014.7.0.

3.4. Advanced Topics 103

Salt Documentation, Release 2015.8.8

Both HTTPS and SSH authentication are supported as of version 0.20.3, which is the earliest version of pygit2
supported by Salt for gitfs.

Note: The examples below make use of per-remote configuration parameters, a feature new to Salt 2014.7.0. More
information on these can be found here.

HTTPS For HTTPS repositories which require authentication, the username and password can be provided like
so:

gitfs_remotes:
- https://domain.tld/myrepo.git:
- user: git
- password: mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by default refuse to authenticate to it. This
behavior can be overridden by adding an insecure_auth parameter:

gitfs_remotes:
- http://domain.tld/insecure_repo.git:
- user: git
- password: mypassword
- dinsecure_auth: True

SSH SSH repositories can be configured using the ssh: // protocol designation, or using scp-like syntax. So, the
following two configurations are equivalent:

. ssh://git@github.com/user/repo.git
. git@github.com:user/repo.git

Both gitfs_pubkey and gitfs_privkey (or their per-remote counterparts) must be configured in order to
authenticate to SSH-based repos. If the private key is protected with a passphrase, it can be configured using
gitfs_passphrase (or simply passphrase if being configured per-remote). For example:

gitfs_remotes:
- git@github.com:user/repo.git:
- pubkey: /root/.ssh/id_rsa.pub
- privkey: /root/.ssh/id_rsa
- passphrase: myawesomepassphrase

Finally, the SSH host key must be added to the known_hosts file.

GitPython

With GitPython, only passphrase-less SSH public key authentication is supported. The auth parameters (pubkey,
privkey, etc.) shown in the pygit2 authentication examples above do not work with GitPython.

gitfs_remotes:
- ssh://git@github.com/example/salt-states.git

Since GitPython wraps the git CLI, the private key must be located in ~/ . ssh/id_rsa for the user under which the
Master is running, and should have permissions of 0600. Also, in the absence of a user in the repo URL, GitPython
will (just as SSH does) attempt to login as the current user (in other words, the user under which the Master is
running, usually root).

104 Chapter 3. Tutorials

https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2015.8.8

If a key needs to be used, then ~/ .ssh/config can be configured to use the desired key. Information on how to
do this can be found by viewing the manpage for ssh_config. Here's an example entry which can be added to
the ~/.ssh/conf1ig to use an alternate key for gitfs:

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs

The Host parameter should be a hostname (or hostname glob) that matches the domain name of the git repository.

It is also necessary to add the SSH host key to the known_hosts file. The exception to this would be if strict
host key checking is disabled, which can be done by adding StrictHostKeyChecking no to the entry in
~/.ssh/config

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs
StrictHostKeyChecking no

However, this is generally regarded as insecure, and is not recommended.

Adding the SSH Host Key to the known_hosts File

To use SSH authentication, it is necessary to have the remote repository's SSH host key in the
~/ .ssh/known_hosts file. If the master is also a minion, this can be done using the ssh. set_known_host
function:

salt mymaster ssh.set_known_host user=root hostname=github.com
mymaster:

ssh-rsa
fingerprint:
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48
hostname:
|1]07efWWqOD4kwO3BhoIGa® loR5AA=|BIXVtmcTbPER+68HVvXmceodDcfI=
key:
AAAAB3NzaClyc2EAAAABIWAAAQEAQ2A7ThRGmdnm9tUDbO9IDSWBK6TbQa+PXYPCPy6rbTrTtw7PH
old:
None
status:
updated

ikccKrppOyVhp!

If not, then the easiest way to add the key is to su to the user (usually root) under which the salt-master runs and
attempt to login to the server via SSH:

$ su

Password:

ssh github.com

The authenticity of host 'github.com (192.30.252.128)' can't be established.

RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'github.com,192.30.252.128"' (RSA) to the 1list of known hosts
Permission denied (publickey).

It doesn't matter if the login was successful, as answering yes will write the fingerprint to the known_hosts file.

3.4. Advanced Topics 105

Salt Documentation, Release 2015.8.8

Verifying the Fingerprint To verify that the correct fingerprint was added, it is a good idea to look it up. One way

to do this is to use nmap:

$ nmap github.com --script ssh-hostkey

Starting Nmap 5.51 (http://nmap.org) at 2014-08-18 17:47 CDT
Nmap scan report for github.com (192.30.252.129)

Host is up (0.17s latency).

Not shown: 996 filtered ports

PORT STATE SERVICE

22/tcp open ssh

| ssh-hostkey: 1024 ad:1c:08:a4:40:e3:6f:9c:f5:66:26:5d:4b:33:5d:8c (DSA)
| _2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 (RSA)
80/tcp open http

443 /tcp open https

9418/tcp open git

Nmap done: 1 IP address (1 host up) scanned in 28.78 seconds

Another way is to check one's own known_hosts file, using this one-liner:

$ ssh-keygen -1 -f /dev/stdin <<< ssh-keyscan -t rsa github.com 2>/dev/null’

16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

| awk "{pr]

Refreshing gitfs Upon Push

By default, Salt updates the remote fileserver backends every 60 seconds. However, if it is desirable to refresh quicker
than that, the Reactor System can be used to signal the master to update the fileserver on each push, provided that

the git server is also a Salt minion. There are three steps to this process:

1. On the master, create a file /srv/reactor/update_fileserver.sls, with the following contents:

update_fileserver:
runner.fileserver.update

2. Add the following reactor configuration to the master config file:

reactor:
- 'salt/fileserver/gitfs/update':
- /srv/reactor/update_fileserver.sls

3. On the git server, add a post-receive hook with the following contents:

#!/usr/bin/env sh

salt-call event.fire_master update salt/fileserver/gitfs/update

The update argument right after event. fire_master in this example can really be anything, as it represents

the data being passed in the event, and the passed data is ignored by this reactor.

Similarly, the tag name salt/fileserver/gitfs/update can be replaced by anything, so long as the usage

is consistent.

Using Git as an External Pillar Source

The git external pillar (ak.a. git_pillar) has been rewritten for the 2015.8.0 release. This rewrite brings with it
pygit2 support (allowing for access to authenticated repositories), as well as more granular support for per-remote

configuration.

106 Chapter 3. Tutorials

nt $2}'

http://www.git-scm.com/book/en/Customizing-Git-Git-Hooks#Server-Side-Hooks
https://github.com/libgit2/pygit2

Salt Documentation, Release 2015.8.8

To make use of the new features, changes to the git ext_pillar configuration must be made. The new configuration
schema is detailed here.

For Salt releases before 2015.8.0, click here for documentation.

Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process, these interrupt the fileserver update
that takes place before custom types are synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and attempting the sync again.

This issue is worked around in Salt 0.16.4 and newer.

3.4.10 The MacOS X (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on Mac OS X.

Note: This guide is aimed at developers who wish to run Salt in a virtual machine. The official (Linux) walkthrough
can be found here.

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here's a brief overview of a Salt cluster:

- Salt works by having a ' ‘master" server sending commands to one or multiple ' ‘minion" servers !. The mas-
ter server is the ~“command center". It is going to be the place where you store your configuration files, aka:
“*which server is the db, which is the web server, and what libraries and software they should have installed".
The minions receive orders from the master. Minions are the servers actually performing work for your busi-
ness.

« Salt has two types of configuration files:

1. the " “salt communication channels" or ““meta" or *“config" configuration files (not official names): one for
the master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion
or /etc/salt/minion.conf, on the minion servers). Those files are used to determine things like the Salt Master
IP, port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which software a given minion should install.

2. the ““business" or "“service" configuration files (once again, not an official name): these are configuration
files, ending with ".sls" extension, that describe which software should run on which server, along with par-
ticular configuration properties for the software that is being installed. These files should be created in the
/srv/salt folder by default, but their location can be changed using ... /etc/salt/master configuration file!

Note: This tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. This in itself is not specifically tied to Salt, but it also contains some

Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
matters.

! Salt also works with " “masterless" configuration where a minion is autonomous (in which case salt can be seen as a local configuration tool),
or in ' 'multiple master" configuration. See the documentation for more on that.

3.4. Advanced Topics 107

http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2015.8.8

Before Digging In, The Architecture Of The Salt Cluster

Salt Master

The " "Salt master" server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. This is going to be more convenient for toying around with configuration
files.

Salt Minion

We'll only have one " *Salt minion" server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

3.4.11 Step 1 - Configuring The Salt Master On Your Mac

official documentation

Because Salt has a lot of dependencies that are not built in Mac OS X, we will use Homebrew to install Salt. Homebrew
is a package manager for Mac, it's great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a package manager is once they're
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles, and links
software. The linking phase is when compiled software is deployed on your machine. It may conflict with manually

installed software, especially in the /usr/local directory. It's ok, remove the manually installed version then refresh
the link by typing brew T1link 'packageName'. Brew has a brew doctor command that can help you
troubleshoot. It's a great command, use it often. Brew requires xcode command line tools. When you run brew the
first time it asks you to install them if they're not already on your system. Brew installs software in /usr/local/bin
(system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period inthe "“open" Mac OS X dialog box to display hidden
files and folders, such as .profile.

Install Homebrew

Install Homebrew here http://brew.sh/ Or just type

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Now type the following commands in your terminal (you may want to type brew doctor after each to make sure
everything's fine):

brew install python
brew install swig
brew install zmq

Note: zmgq is ZeroMQ. It's a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

108 Chapter 3. Tutorials

http://docs.saltstack.com/topics/installation/osx.html
http://brew.sh/

Salt Documentation, Release 2015.8.8

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: There should be no need for sudo pip install salt. Brew installed Python for your user, so you should
have all the access. In case you would like to check, type which python to ensure that it's /usr/local/bin/python,

and which pip which should be /usr/local/bin/pip.

Now type python in a terminal then, import salt. There should be no errors. Now exit the Python terminal
using exit ().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here:
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Note: /etc/salt/master is afile, not a folder.

Salt Master configuration changes. The Salt master needs a few customization to be able to run on Mac OS X:

’sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn't already exists).

You should now be able to launch the Salt master:

’sudo salt-master --log-level=all

There should be no errors when running the above command.

Note: This command is supposed to be a daemon, but for toying around, we'll keep it running on a terminal to
monitor the activity.

Now that the master is set, let's configure a minion on a VM.

3.4.12 Step 2 - Configuring The Minion VM

The Salt minion is going to run on a Virtual Machine. There are a lot of software options that let you run virtual
machines on a mac, But for this tutorial we're going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using " provisioners".
In our case, we'll use it to:

« Download the base Ubuntu image

« Install salt on that Ubuntu image (Salt is going to be the " “provisioner" for the VM).
« Launch the VM

« SSH into the VM to debug

« Stop the VM once you're done.

3.4. Advanced Topics 109

http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Salt Documentation, Release 2015.8.8

Install VirtualBox

Go get it here: https://www.virtualBox.org/wiki/Downloads (click on VirtualBox for OS X hosts => x86/amd64)

Install Vagrant
Go get it here: http://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the

.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial, it's going to be a minion folder in the
$home directory.

cd Shome
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant init

This command creates a default Vagrantfile configuration file. This configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: This box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

‘conf‘ig.vm.box = "precise64" ‘

Uncomment the line creating a host-only IP. This is the ip of your minion (you can change it to something else if
that IP is already in use):

’conﬁ'g.vm.network :private_network, dip: "192.168.33.10" ‘

At this point you should have a VM that can run, although there won't be much in it. Let's check that.

110 Chapter 3. Tutorials

https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2015.8.8

Checking The VM

From the $home/minion folder type:

‘vagrant up

A log showing the VM booting should be present. Once it's done you'll be back to the terminal:

]pw‘ng 192.168.33.10

The VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

‘vagrant ssh

You should see the shell prompt change to something similar to vagrant@precise64: ~$ meaning you're inside
the VM. From there, enter the following:

’p'ing 10.0.2.2

Note: That ip is the ip of your VM host (the Mac OS X OS). The number is a VirtualBox default and is displayed in
the log after the Vagrant ssh command. We'll use that IP to tell the minion where the Salt master is. Once you're

done, end the ssh session by typing exi t.

It's now time to connect the VM to the salt master

3.4.13 Step 3 - Connecting Master and Minion
Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

master: 10.0.2.2
id: 'minionl'
file_client: remote

Minions authenticate with the master using keys. Keys are generated automatically if you don't provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minionl

This should create two files: minion1.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minionl.pem
sudo chown youruser:yourgroup minionl.pub

Then copy the .pub file into the list of accepted minions:

3.4. Advanced Topics 111

Salt Documentation, Release 2015.8.8

sudo cp minionl.pub /etc/salt/pki/master/minions/minionl

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

salt-vagrant config
config.vm.provision :salt do |salt|
salt.run_highstate = true

salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minionl.pem"
salt.minion_pub = "./minionl.pub"

end

Now destroy the vm and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

sudo salt '*' test.ping

You should see your minion answering the ping. It's now time to do some configuration.

3.4.14 Step 4 - Configure Services to Install On the Minion

In this step we'll use the Salt master to instruct our minion to install Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at
http://192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders), and then applied by running the
state.apply function to have the Salt master order its minions to update their instructions and run the associated
commands.

First Create an empty file on your Salt master (Mac OS X machine):

touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

112 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

sudo salt 'minionl' state.apply

This should return an error stating: No Top file or external nodes data matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration. For this tutorial our minion will be treated
as a web server that needs to have Nginx installed.

Insert the following lines into /srv/salt/top.s'ls (which should current be empty).

base:
'minionl':
- bin.nginx

Now create /srv/salt/bin/nginx.sls containing the following:

nginx:
pkg.installed:
- name: nginx
service.running:
- enable: True
- reload: True

Check Minion State

Finally, run the state.apply function again:

sudo salt 'minionl' state.apply

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!

Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here:
http://docs.saltstack.com/en/latest/index.html#configuration-management

3.4.15 Salt's Test Suite: An Introduction

Note: This tutorial makes a couple of assumptions. The first assumption is that you have a basic knowledge of Salt.
To get up to speed, check out the Salt Walkthrough.

The second assumption is that your Salt development environment is already configured and that you have a basic
understanding of contributing to the Salt codebase. If you're unfamiliar with either of these topics, please refer to
the Installing Salt for Development and the Contributing pages, respectively.

Salt comes with a powerful integration and unit test suite. The test suite allows for the fully automated run of
integration and/or unit tests from a single interface.

3.4. Advanced Topics 113

http://192.168.33.10/
http://docs.saltstack.com/en/latest/index.html#configuration-management

Salt Documentation, Release 2015.8.8

Salt's test suite is located under the tests directory in the root of Salt's code base and is divided into two main types
of tests: unit tests and integration tests. The unit and integration sub test suites are located in the tests
directory, which is where the majority of Salt's test cases are housed.

Getting Set Up For Tests

There are a couple of requirements, in addition to Salt's requirements, that need to be installed in order to run
Salt's test suite. You can install these additional requirements using the files located in the salt/requirements
directory, depending on your relevant version of Python:

pip install -r requirements/dev_python26.txt
pip install -r requirements/dev_python27.txt

Test Directory Structure

As noted in the introduction to this tutorial, Salt's test suite is located in the tests directory in the root of Salt's code
base. From there, the tests are divided into two groups integration and unit. Within each of these directories,
the directory structure roughly mirrors the directory structure of Salt's own codebase. For example, the files inside
tests/integration/modules contains tests for the files located within salt/modules.

Note: tests/integration and tests/unit are the only directories discussed in this tutorial. With the
exception of the tests/runtests. py file, which is used below in the Running the Test Suite section, the other

directories and files located in tests are outside the scope of this tutorial.

Integration vs. Unit

Given that Salt's test suite contains two powerful, though very different, testing approaches, when should you write
integration tests and when should you write unit tests?

Integration tests use Salt masters, minions, and a syndic to test salt functionality directly and focus on testing the
interaction of these components. Salt's integration test runner includes functionality to run Salt execution modules,
runners, states, shell commands, salt-ssh commands, salt-api commands, and more. This provides a tremendous
ability to use Salt to test itself and makes writing such tests a breeze. Integration tests are the preferred method of
testing Salt functionality when possible.

Unit tests do not spin up any Salt daemons, but instead find their value in testing singular implementations of
individual functions. Instead of testing against specific interactions, unit tests should be used to test a function's
logic. Unit tests should be used to test a function's exit point(s) such as any return or raises statements.

Unit tests are also useful in cases where writing an integration test might not be possible. While the integration
test suite is extremely powerful, unfortunately at this time, it does not cover all functional areas of Salt's ecosystem.
For example, at the time of this writing, there is not a way to write integration tests for Proxy Minions. Since the
test runner will need to be adjusted to account for Proxy Minion processes, unit tests can still provide some testing
support in the interim by testing the logic contained inside Proxy Minion functions.

Running the Test Suite

Once all of the ‘requirements<Getting Set Up For Tests>'_ are installed, the runtests.py file in the
salt/tests directory is used to instantiate Salt's test suite:

‘python tests/runtests.py [OPTIONS]

114 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

The command above, if executed without any options, will run the entire suite of integration and unit tests. Some
tests require certain flags to run, such as destructive tests. If these flags are not included, then the test suite will only
perform the tests that don't require special attention.

At the end of the test run, you will see a summary output of the tests that passed, failed, or were skipped.

The test runner also includes a ——help option that lists all of the various command line options:

‘python tests/runtests.py --help

You can also call the test runner as an executable:

’ ./tests/runtests.py --help

Running Integration Tests

Salt's set of integration tests use Salt to test itself. The integration portion of the test suite includes some built-in Salt
daemons that will spin up in preparation of the test run. This list of Salt daemon processes includes:

« 2 Salt Masters
« 2 Salt Minions
« 1 Salt Syndic

These various daemons are used to execute Salt commands and functionality within the test suite, allowing you to
write tests to assert against expected or unexpected behaviors.

A simple example of a test utilizing a typical master/minion execution module command is the test for the
test_ping function in the tests/integration/modules/test.py file:

def test_ping(self):

rr

test.ping

rr

self.assertTrue(self.run_function('test.ping'))

The test above is a very simple example where the test.ping function is executed by Salt's test suite runner and
is asserting that the minion returned with a True response.

Test Selection Options If you look in the output of the ——help command of the test runner, you will see a section
called Tests Selection Options. The options under this section contain various subsections of the integration
test suite such as ——modules, ——ssh, or ——states. By selecting any one of these options, the test daemons will
spin up and the integration tests in the named subsection will run.

./tests/runtests.py --modules

Note: The testing subsections listed in the Tests Selection Options of the ——help output only apply to
the integration tests. They do not run unit tests.

Running Unit Tests

While . /tests/runtests.py executes the entire test suite (barring any tests requiring special flags), the ——
unit flag can be used to run only Salt's unit tests. Salt's unit tests include the tests located in the tests/unit
directory.

3.4. Advanced Topics 115

Salt Documentation, Release 2015.8.8

The unit tests do not spin up any Salt testing daemons as the integration tests do and execute very quickly compared
to the integration tests.

./tests/runtests.py --unit

Running Specific Tests

There are times when a specific test file, test class, or even a single, individual test need to be executed, such as when
writing new tests. In these situations, the ——name option should be used.

For running a single test file, such as the pillar module test file in the integration test directory, you must provide
the file path using . instead of / as separators and no file extension:

./tests/runtests.py --name=integration.modules.pillar
./tests/runtests.py -n integration.modules.pillar

Some test files contain only one test class while other test files contain multiple test classes. To run a specific test
class within the file, append the name of the test class to the end of the file path:

./tests/runtests.py —--name=integration.modules.pillar.PillarModuleTest
./tests/runtests.py -n integration.modules.pillar.PillarModuleTest

To run a single test within a file, append both the name of the test class the individual test belongs to, as well as the
name of the test itself:

./tests/runtests.py —--name=integration.modules.pillar.PillarModuleTest.test_data
./tests/runtests.py -n integration.modules.pillar.PillarModuleTest.test_data

The ——-name and —n options can be used for unit tests as well as integration tests. The following command is an
example of how to execute a single test found in the tests/unit/modules/cp_test.py file:

./tests/runtests.py —-n unit.modules.cp_test.CpTestCase.test_get_template_success

Writing Tests for Salt

Once you're comfortable running tests, you can now start writing them! Be sure to review the Integration vs. Unit
section of this tutorial to determine what type of test makes the most sense for the code you're testing.

Note: There are many decorators, naming conventions, and code specifications required for Salt test files. We will
not be covering all of the these specifics in this tutorial. Please refer to the testing documentation links listed below

in the Additional Testing Documentation section to learn more about these requirements.

In the following sections, the test examples assume the " 'new" test is added to a test file that is already present and
regularly running in the test suite and is written with the correct requirements.

Writing Integration Tests

Since integration tests validate against a running environment, as explained in the Running Integration Tests section
of this tutorial, integration tests are very easy to write and are generally the preferred method of writing Salt tests.

The following integration test is an example taken from the test. py fileinthe tests/integration/modules
directory. This test uses the run_function method to test the functionality of a traditional execution module
command.

116 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

The run_function method uses the integration test daemons to execute a module. function command as
you would with Salt. The minion runs the function and returns. The test also uses Python's Assert Functions to test
that the minion's return is expected.

def test_ping(self):

rr

test.ping

rr

self.assertTrue(self.run_function('test.ping'))

Args can be passed in to the run_function method as well:

def test_echo(self):

rr

test.echo
rr

self.assertEqual(self.run_function('test.echo', ['text']), 'text')

The next example is taken from the tests/integration/modules/aliases.py file and demonstrates
how to pass kwargs to the run_function call. Also note that this test uses another salt function to en-
sure the correct data is present (via the aliases.set_target call) before attempting to assert what the
aliases.get_target call should return.

def test_set_target(self):

rr

aliases.set_target and aliases.get_target

rr

set_ret = self.run_function(
'aliases.set_target',
alias="'fred',
target="bob")

self.assertTrue(set_ret)

tgt_ret = self.run_function(
'aliases.get_target',
alias="'fred')

self.assertEqual(tgt_ret, 'bob'")

Using multiple Salt commands in this manor provides two useful benefits. The first is that it provides some additional
coverage for the aliases.set_target function. The second benefit is the call to aliases.get_targetis
not dependent on the presence of any aliases set outside of this test. Tests should not be dependent on the previous
execution, success, or failure of other tests. They should be isolated from other tests as much as possible.

While it might be tempting to build out a test file where tests depend on one another before running, this should be
avoided. SaltStack recommends that each test should test a single functionality and not rely on other tests. Therefore,
when possible, individual tests should also be broken up into singular pieces. These are not hard-and-fast rules, but
serve more as recommendations to keep the test suite simple. This helps with debugging code and related tests when
failures occur and problems are exposed. There may be instances where large tests use many asserts to set up a use
case that protects against potential regressions.

Note: The examples above all use the run_function option to test execution module functions in a traditional
master/minion environment. To see examples of how to test other common Salt components such as runners, salt-

api, and more, please refer to the Integration Test Class Examples documentation.

Destructive vs Non-destructive Tests Since Salt is used to change the settings and behavior of systems, often, the
best approach to run tests is to make actual changes to an underlying system. This is where the concept of destructive

3.4. Advanced Topics 117

https://docs.python.org/2/library/unittest.html#assert-methods

Salt Documentation, Release 2015.8.8

integration tests comes into play. Tests can be written to alter the system they are running on. This capability is
what fills in the gap needed to properly test aspects of system management like package installation.

To write a destructive test, import and use the destructiveTest decorator for the test method:

import integration
from salttesting.helpers import destructiveTest

class PkgTest(integration.ModuleCase):
@destructiveTest
def test_pkg_install(self):
ret = self.run_function('pkg.install', name='finch")
self.assertSaltTrueReturn(ret)
ret = self.run_function('pkg.purge', name='finch')
self.assertSaltTrueReturn(ret)

Writing Unit Tests

As explained in the Integration vs. Unit section above, unit tests should be written to test the logic of a function. This
includes focusing on testing return and raises statements. Substantial effort should be made to mock external
resources that are used in the code being tested.

External resources that should be mocked include, but are not limited to, APIs, function calls, external data either
globally available or passed in through function arguments, file data, etc. This practice helps to isolate unit tests to
test Salt logic. One handy way to think about writing unit tests is to " "block all of the exits". More information about
how to properly mock external resources can be found in Salt's Unit Test documentation.

Salt's unit tests utilize Python's mock class as well as MagicMock. The @patch decorator is also heavily used when
**blocking all the exits".

A simple example of a unit test currently in use in Salt is the test_get_file_not_found test in the
tests/unit/modules/cp_test.py file. This test uses the @patch decorator and MagicMock to mock
the return of the call to Salt's cp.hash_file execution module function. This ensures that we're testing the
cp.get_f1ile function directly, instead of inadvertently testing the call to cp.hash_f1ile, which is used in
cp.get_file.

@patch('salt.modules.cp.hash_file', MagicMock(return_value=False))
def test_get_file_not_found(self):

rr

Test if get_file can't find the file.

path = 'salt://saltines'

dest = '/srv/salt/cheese'

ret = "'

self.assertEqual(cp.get_file(path, dest), ret)

Note that Salt's cp module is imported at the top of the file, along with all of the other necessary testing imports. The
get_f1ile function is then called directed in the testing function, instead of using the run_function method as
the integration test examples do above.

The callto cp . get_f1ile returns an empty string when a hash_f1le isn't found. Therefore, the example above is
a good illustration of a unit test ' "blocking the exits" via the @patch decorator, as well as testing logic via asserting
against the return statement in the if clause.

There are more examples of writing unit tests of varying complexities available in the following docs:
« Simple Unit Test Example<simple-unit-example>

« Complete Unit Test Example<complete-unit-example>

118 Chapter 3. Tutorials

http://www.voidspace.org.uk/python/mock/index.html

Salt Documentation, Release 2015.8.8

« Complex Unit Test Example<complex-unit-example>

Note: Considerable care should be made to ensure that you're testing something useful in your test functions. It
is very easy to fall into a situation where you have mocked so much of the original function that the test results in

only asserting against the data you have provided. This results in a poor and fragile unit test.

Automated Test Runs

SaltStack maintains a Jenkins server which can be viewed at http://jenkins.saltstack.com. The tests executed from
this Jenkins server create fresh virtual machines for each test run, then execute the destructive tests on the new,
clean virtual machine. This allows for the execution of tests across supported platforms.

Additional Testing Documentation

In addition to this tutorial, there are some other helpful resources and documentation that go into more depth on Salt's
test runner, writing tests for Salt code, and general Python testing documentation. Please see the follow references
for more information:

o Salt's Test Suite Documentation

Integration Tests

Unit Tests

« MagicMock

Python Unittest

Python's Assert Functions

3.4.16 HTTP Modules

This tutorial demonstrates using the various HTTP modules available in Salt. These modules wrap the Python tor-
nado,urllib2, and requests libraries, extending them in a manner that is more consistent with Salt workflows.

The salt.utils.http Library

This library forms the core of the HTTP modules. Since it is designed to be used from the minion as an execution
module, in addition to the master as a runner, it was abstracted into this multi-use library. This library can also be
imported by 3rd-party programs wishing to take advantage of its extended functionality.

Core functionality of the execution, state, and runner modules is derived from this library, so common usages be-
tween them are described here. Documentation specific to each module is described below.

This library can be imported with:

import salt.utils.http

Configuring Libraries

This library can make use of either tornado, which is required by Salt, ur L1ib2, which ships with Python, or
requests, which can be installed separately. By default, tornado will be used. In order to switch to ur1lib2,
set the following variable:

3.4. Advanced Topics 119

http://jenkins.saltstack.com
http://www.voidspace.org.uk/python/mock/index.html
https://docs.python.org/2/library/unittest.html
https://docs.python.org/2/library/unittest.html#assert-methods

Salt Documentation, Release 2015.8.8

| backend: urllib2

In order to switch to requests, set the following variable:

’backend: requests

This can be set in the master or minion configuration file, or passed as an option directly to any http.query ()
functions.

salt.utils.http.query()

This function forms a basic query, but with some add-ons not present in the tornado, ur1lib2, and requests
libraries. Not all functionality currently available in these libraries has been added, but can be in future iterations.

A basic query can be performed by calling this function with no more than a single URL:

’ salt.utils.http.query('http://example.com')

By default the query will be performed with a GET method. The method can be overridden with the method
argument:

‘ salt.utils.http.query('http://example.com/delete/url', 'DELETE")

When using the POST method (and others, such as PUT), extra data is usually sent as well. This data can be sent
directly, in whatever format is required by the remote server (XML, JSON, plain text, etc).

salt.utils.http.query(
'http://example.com/delete/url’',
method="'POST"',
data=json.loads(mydict)

)

Bear in mind that this data must be sent pre-formatted; this function will not format it for you. However, a templated
file stored on the local system may be passed through, along with variables to populate it with. To pass through only
the file (untemplated):

salt.utils.http.query(
'http://example.com/post/url',
method="POST"',
data_file='/srv/salt/somefile.xml'

)

To pass through a file that contains jinja + yaml templating (the default):

salt.utils.http.query(
'http://example.com/post/url',
method="POST"',
data_file="'/srv/salt/somefile.jinja’,
data_render=True,
template_data={'keyl': 'valuel', 'key2': 'value2'}
)

To pass through a file that contains mako templating:

salt.utils.http.query(
"http://example.com/post/url',
method="POST"',
data_file="'/srv/salt/somefile.mako',

120 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

data_render=True,

data_renderer="mako',

template_data={'keyl': 'valuel', 'key2': 'value2'}
)

Because this function uses Salt's own rendering system, any Salt renderer can be used. Because Salt's renderer
requires __opts__ to be set, an opts dictionary should be passed in. If it is not, then the default __opts__
values for the node type (master or minion) will be used. Because this library is intended primarily for use by
minions, the default node type is minion. However, this can be changed to master if necessary.

salt.utils.http.query(
'http://example.com/post/url',
method="'POST"',
data_file='/srv/salt/somefile.jinja’,
data_render=True,
template_data={'keyl': 'valuel', 'key2': 'value2'},
opts=__opts_

)

salt.utils.http.query(
'http://example.com/post/url',
method="POST"',
data_file="'/srv/salt/somefile.jinja’,
data_render=True,
template_data={'keyl': 'valuel', 'key2': 'value2'},
node="'master'

)

Headers may also be passed through, either asa header_1list,aheader_dict,orasaheader_file. Aswith
the data_f1ile, the header_f1ile may also be templated. Take note that because HT TP headers are normally
syntactically-correct YAML, they will automatically be imported as an a Python dict.

salt.utils.http.query(
'http://example.com/delete/url’',
method="POST"',
header_file='/srv/salt/headers.jinja',
header_render=True,
header_renderer="'jinja',
template_data={'keyl': 'valuel', 'key2': 'value2'}
)

Because much of the data that would be templated between headers and data may be the same, the template_data
is the same for both. Correcting possible variable name collisions is up to the user.

The query () function supports basic HT TP authentication. A username and password may be passed in as user-
name and password, respectively.

salt.utils.http.query(
'"http://example.com',
username="'larry',
password="5700g3543v4r ",

)

Cookies are also supported, using Python's built-in cookielib. However, they are turned off by default. To turn
cookies on, set cookies to True.

salt.utils.http.query(
'http://example.com',

3.4. Advanced Topics 121

Salt Documentation, Release 2015.8.8

cookies=True

)

By default cookies are stored in Salt's cache directory, normally /var/cache/salt, as a file called cook-
jes. txt. However, this location may be changed with the cookie_jar argument:

salt.utils.http.query(
"http://example.com',
cookies=True,
cookie_jar="'/path/to/cookie_jar.txt'
)

By default, the format of the cookie jar is LWP (aka, lib-www-perl). This default was chosen because it is a human-
readable text file. If desired, the format of the cookie jar can be set to Mozilla:

salt.utils.http.query(
'"http://example.com',
cookies=True,
cookie_jar="'/path/to/cookie_jar.txt',
cookie_format="mozilla'

)

Because Salt commands are normally one-off commands that are piped together, this library cannot normally be-
have as a normal browser, with session cookies that persist across multiple HTTP requests. However, the session
can be persisted in a separate cookie jar. The default filename for this file, inside Salt's cache directory, is cook—
jes.session.p. This can also be changed.

salt.utils.http.query(
"http://example.com',
persist_session=True,
session_cookie_jar="'/path/to/jar.p'

)

The format of this file is msgpack, which is consistent with much of the rest of Salt's internal structure. Historically,
the extension for this file is . p. There are no current plans to make this configurable.

Return Data

Note: Return data encoding

If decode is set to True, query () will attempt to decode the return data. decode_type defaults to auto. Set
it to a specific encoding, xm1, for example, to override autodetection.

Because Salt's http library was designed to be used with REST interfaces, query () will attempt to decode the data
received from the remote server when decode is set to True. First it will check the Content-type header to
try and find references to XML. If it does not find any, it will look for references to JSON. If it does not find any, it
will fall back to plain text, which will not be decoded.

JSON data is translated into a dict using Python's built-in json library. XML is translated using
salt.utils.xml_util, which will use Python's built-in XML libraries to attempt to convert the XML into
a dict. In order to force either JSON or XML decoding, the decode_type may be set:

salt.utils.http.query(
'http://example.com',
decode_type="'xml'

122 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Once translated, the return dict from query () will include a dict called dict.

If the data is not to be translated using one of these methods, decoding may be turned off.

salt.utils.http.query(
'"http://example.com',
decode=False

)

If decoding is turned on, and references to JSON or XML cannot be found, then this module will default to plain text,
and return the undecoded data as text (even if text is set to Fa'lse; see below).

The query () function can return the HTTP status code, headers, and/or text as required. However, each must
individually be turned on.

salt.utils.http.query(
'http://example.com',
status=True,
headers=True,
text=True

)

The return from these will be found in the return dict as status, headers and text, respectively.

Writing Return Data to Files

It is possible to write either the return data or headers to files, as soon as the response is received from the server,
but specifying file locations via the text_out or headers_out arguments. text and headers do not need to
be returned to the user in order to do this.

salt.utils.http.query(
'"http://example.com',
text=False,
headers=False,
text_out='/path/to/url_download.txt',
headers_out='/path/to/headers_download.txt"',

SSL Verification

By default, this function will verify SSL certificates. However, for testing or debugging purposes, SSL verification
can be turned off.

salt.utils.http.query(
'https://example.com',
verify_ssl=False,

CA Bundles

The requests library has its own method of detecting which CA (certificate authority) bundle file to use. Usually
this is implemented by the packager for the specific operating system distribution that you are using. However,
ur1lib2 requires a little more work under the hood. By default, Salt will try to auto-detect the location of this file.
However, if it is not in an expected location, or a different path needs to be specified, it may be done so using the
ca_bundle variable.

3.4. Advanced Topics 123

Salt Documentation, Release 2015.8.8

salt.utils.http.query(
'https://example.com',
ca_bundle="'/path/to/ca_bundle.pem',

Updating CA Bundles The update_ca_bundle () function can be used to update the bundle file at a specified
location. If the target location is not specified, then it will attempt to auto-detect the location of the bundle file. If
the URL to download the bundle from does not exist, a bundle will be downloaded from the cURL website.

CAUTION: The target and the source should always be specified! Failure to specify the target may result
in the file being written to the wrong location on the local system. Failure to specify the source may cause the
upstream URL to receive excess unnecessary traffic, and may cause a file to be download which is hazardous or does
not meet the needs of the user.

salt.utils.http.update_ca_bundle(
target="'/path/to/ca-bundle.crt',
source="https://example.com/path/to/ca-bundle.crt',
opts=__opts__,

)

The opts parameter should also always be specified. If it is, then the target and the source may be specified
in the relevant configuration file (master or minion) as ca_bundle and ca_bundle_ur, respectively.

ca_bundle: /path/to/ca-bundle.crt
ca_bundle_url: https://example.com/path/to/ca-bundle.crt

If Salt is unable to auto-detect the location of the CA bundle, it will raise an error.

The update_ca_bundle() function can also be passed a string or a list of strings which represent files on the
local system, which should be appended (in the specified order) to the end of the CA bundle file. This is useful in
environments where private certs need to be made available, and are not otherwise reasonable to add to the bundle
file.

salt.utils.http.update_ca_bundle(
opts=__opts__,
merge_files=[
'/etc/ssl/private_cert_1l.pem',
'/etc/ssl/private_cert_2.pem',
'/etc/ssl/private_cert_3.pem',

Test Mode

This function may be run in test mode. This mode will perform all work up until the actual HTTP request. By default,
instead of performing the request, an empty dict will be returned. Using this function with TRACE logging turned
on will reveal the contents of the headers and POST data to be sent.

Rather than returning an empty dict, an alternate test_url may be passed in. If this is detected, then test mode
will replace the url with the test_url, set test to True in the return data, and perform the rest of the requested
operations as usual. This allows a custom, non-destructive URL to be used for testing when necessary.

124 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Execution Module
The http execution module is a very thin wrapper around the salt.utils.http library. The opts can be
passed through as well, but if they are not specified, the minion defaults will be used as necessary.

Because passing complete data structures from the command line can be tricky at best and dangerous (in terms of
execution injection attacks) at worse, the data_f1ile, and header_f1le are likely to see more use here.

All methods for the library are available in the execution module, as kwargs.

salt myminion http.query http://example.com/restapi method=POST \
username="'larry' password='5700g3543v4r' headers=True text=True \
status=True decode_type=xml data_render=True \
header_file=/tmp/headers.txt data_file=/tmp/data.txt \
header_render=True cookies=True persist_session=True

Runner Module

Like the execution module, the http runner module is a very thin wrapper around the salt.utils.http library.
The only significant difference is that because runners execute on the master instead of a minion, a target is not
required, and default opts will be derived from the master config, rather than the minion config.

All methods for the library are available in the runner module, as kwargs.

salt-run http.query http://example.com/restapi method=POST \
username="'larry' password='5700g3543v4r' headers=True text=True \
status=True decode_type=xml data_render=True \
header_file=/tmp/headers.txt data_file=/tmp/data.txt \
header_render=True cookies=True persist_session=True

State Module

The state module is a wrapper around the runner module, which applies stateful logic to a query. All kwargs as
listed above are specified as usual in state files, but two more kwargs are available to apply stateful logic. A required
parameter is match, which specifies a pattern to look for in the return text. By default, this will perform a string
comparison of looking for the value of match in the return text. In Python terms this looks like:

if match 1in html_text:
return True

If more complex pattern matching is required, a regular expression can be used by specifying a match_type. By
default this is set to string, but it can be manually set to pcre instead. Please note that despite the name, this
will use Python's re.search () rather than re.match ().

Therefore, the following states are valid:

http://example.com/restapi:
http.query:

- match: 'SUCCESS'
- username: 'larry'
- password: '5700g3543v4r’
- data_render: True
- header_file: /tmp/headers.txt
- data_file: /tmp/data.txt
- header_render: True
- cookies: True
- persist_session: True

3.4. Advanced Topics 125

Salt Documentation, Release 2015.8.8

http://example.com/restapi:
http.query:

- match_type: pcre
- match: '(?7)succe[ss|ed]’
- username: 'larry'
- password: '5700g3543v4r’
- data_render: True
- header_file: /tmp/headers.txt
- data_file: /tmp/data.txt
- header_render: True
- cookies: True
- persist_session: True

In addition to, or instead of a match pattern, the status code for a URL can be checked. This is done using the status
argument:

http://example.com/:
http.query:
- status: '200'

If both are specified, both will be checked, but if only one is True and the other is Fa'lse, then False will be
returned. In this case, the comments in the return data will contain information for troubleshooting.

Because this is a monitoring state, it will return extra data to code that expects it. This data will always include
text and status. Optionally, headers and dict may also be requested by setting the headers and decode
arguments to True, respectively.

3.4.17 LXC Management with Salt

Note: This walkthrough assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

Dependencies

Manipulation of LXC containers in Salt requires the minion to have an LXC version of at least 1.0 (an alpha or
beta release of LXC 1.0 is acceptable). The following distributions are known to have new enough versions of LXC
packaged:

« RHEL/CentOS 6 and later (via EPEL)
« Fedora (All non-EOL releases)
« Debian 8.0 (Jessie)

« Ubuntu 14.04 LTS and later (LXC templates are packaged separately as Ixc-templates, it is recommended to
also install this package)

« openSUSE 13.2 and later

Profiles

Profiles allow for a sort of shorthand for commonly-used configurations to be defined in the minion config file,
grains, pillar, or the master config file. The profile is retrieved by Salt using the config. get function, which looks
in those locations, in that order. This allows for profiles to be defined centrally in the master config file, with several
options for overriding them (if necessary) on groups of minions or individual minions.

126 Chapter 3. Tutorials

https://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2015.8.8

There are two types of profiles:
+ One for defining the parameters used in container creation/clone.

« One for defining the container's network interface(s) settings.

Container Profiles

LXC container profiles are defined defined underneath the 1xc.container_profile config option:

1xc.container_profile:

centos:
template: centos
backing: lvm
vgname: vgl
lvname: 1xclv
size: 10G

centos_big:
template: centos
backing: lvm
vgname: vgl
lvname: 1xclv
size: 20G

Profiles are retrieved using the config. get function, with the recurse merge strategy. This means that a profile
can be defined at a lower level (for example, the master config file) and then parts of it can be overridden at a higher
level (for example, in pillar data). Consider the following container profile data:

In the Master config file:

1xc.container_profile:
centos:
template: centos
backing: lvm
vgname: vgl
lvname: 1xclv
size: 10G

In the Pillar data

1xc.container_profile:
centos:
size: 20G

Any minion with the above Pillar data would have the size parameter in the centos profile overridden to 20G, while
those minions without the above Pillar data would have the 10G size value. This is another way of achieving the
same result as the centos_big profile above, without having to define another whole profile that differs in just one
value.

Note: In the 2014.7.x release cycle and earlier, container profiles are defined under 1xc.profile. This pa-
rameter will still work in version 2015.5.0, but is deprecated and will be removed in a future release. Please

note however that the profile merging feature described above will only work with profiles defined under
1xc.container_profile, and only in versions 2015.5.0 and later.

Additionally, in version 2015.5.0 container profiles have been expanded to support passing template-specific CLI
options to L xc. create. Below is a table describing the parameters which can be configured in container profiles:

3.4. Advanced Topics 127

Salt Documentation, Release 2015.8.8

Parameter | 2015.5.0 and Newer | 2014.7.x and Earlier
template Yes Yes
options' Yes No
image' Yes Yes
backing Yes Yes
snapshot® Yes Yes
lvname' Yes Yes
fstype! Yes Yes
size Yes Yes

1. Parameter is only supported for container creation, and will be ignored if the profile is used when cloning a
container.

2. Parameter is only supported for container cloning, and will be ignored if the profile is used when not cloning
a container.

Network Profiles

LXC network profiles are defined defined underneath the 1xc.network_profile config option. By default, the
module uses a DHCP based configuration and try to guess a bridge to get connectivity.

Warning: on pre 2015.5.2, you need to specify explicitly the network bridge

Ixc.network_profile:

centos:
etho:
link: bro
type: veth
flags: up
ubuntu:
etho:
link: 1lxcbro
type: veth
flags: up

As with container profiles, network profiles are retrieved using the config. get function, with the recurse merge
strategy. Consider the following network profile data:

In the Master config file:

Ixc.network_profile:
centos:
etho:
link: bro
type: veth
flags: up

In the Pillar data

Ixc.network_profile:
centos:
etho:
link: 1xcbro

Any minion with the above Pillar data would use the Ixcbr0 interface as the bridge interface for any container
configured using the centos network profile, while those minions without the above Pillar data would use the br0
interface for the same.

128 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Note: In the 2014.7.x release cycle and earlier, network profiles are defined under 1xc.nic. This parameter will
still work in version 2015.5.0, but is deprecated and will be removed in a future release. Please note however that

the profile merging feature described above will only work with profiles defined under 1xc.network_profiile,
and only in versions 2015.5.0 and later.

The following are parameters which can be configured in network profiles. These will directly correspond to a
parameter in an LXC configuration file (see man 5 1xc.container.conf).

« type - Corresponds to Ixc.network.type
« link - Corresponds to Ixc.network.link
« flags - Corresponds to Ixc.network.flags

Interface-specific options (MAC address, IPv4/IPv6, etc.) must be passed on a container-by-container basis, for
instance using the nic_opts argument to Ixc. create:

salt myminion 1lxc.create containerl profile=centos network_profile=centos nicfoptsz'{etl‘#@: {ipv4: 10

Warning: The ipv4, ipv6, gateway, and 11nk (bridge) settings in network profiles / nic_opts will only work
if the container doesn't redefine the network configuration (for example in /etc/sysconfig/network-
scripts/ifcfg-<interface_name> on RHEL/CentOS, or /etc/network/interfaces on De-
bian/Ubuntu/etc.). Use these with caution. The container images installed using the download template, for
instance, typically are configured for eth0 to use DHCP, which will conflict with static IP addresses set at the
container level.

Note: For LXC < 1.0.7 and DHCP support, set ipv4.gateway: 'auto' isyour network profile, ie.:

Ixc.network_profile.nic:
debian:
etho:
link: 1xcbro
ipv4.gateway: 'auto'

Old Ixc support (<1.0.7)

With saltstack 2015.5.2 and above, normally the setting is autoselected, but before, you'll need to teach your network
profile to set Ixc.network.ipv4.gateway to auto when using a classic ipv4 configuration.

Thus you'll need

1xc.network_profile.foo:
etho:
link: 1xcbro
ipv4.gateway: auto

Tricky network setups Examples

This example covers how to make a container with both an internal ip and a public routable ip, wired on two veth
pairs.

The another interface which receives directly a public routable ip can't be on the first interface that we reserve for
private inter LXC networking.

3.4. Advanced Topics 129

Salt Documentation, Release 2015.8.8

Ixc.network_profile.foo:
etho: {gateway: null, bridge: 1lxcbro}
ethl:
replace that by your main interface
'"Tink': 'bro'
'mac': '00:16:5b:01:24:el'
'gateway': '2.20.9.14"'
"ipv4': '2.20.9.1°

Creating a Container on the CLI

From a Template

LXC is commonly distributed with several template scripts in /usr/share/Ixc/templates. Some distros may package
these separately in an Ixc-templates package, so make sure to check if this is the case.

There are LXC template scripts for several different operating systems, but some of them are designed to use tools
specific to a given distribution. For instance, the ubuntu template uses deb_bootstrap, the centos template uses
yum, etc., making these templates impractical when a container from a different OS is desired.

The Lxc. create function is used to create containers using a template script. To create a CentOS container named
containerl on a CentOS minion named mycentosminion, using the centos LXC template, one can simply
run the following command:

salt mycentosminion lxc.create containerl template=centos

For these instances, there is a download template which retrieves minimal container images for several differ-
ent operating systems. To use this template, it is necessary to provide an options parameter when creating the
container, with three values:

1. dist - the Linux distribution (i.e. ubuntu or centos)
2. release - the release name/version (i.e. trusty or 6)
3. arch - CPU architecture (i.e. amd64 or i1386)

The 1xc.images function (new in version 2015.5.0) can be used to list the available images. Al-
ternatively, the releases can be viewed on http://images.linuxcontainers.org/images/. The images are or-
ganized in such a way that the dist, release, and arch can be determined using the following URL
format: http://images.linuxcontainers.org/images/dist/release/arch. For example,
http://images. linuxcontainers.org/images/centos/6/amd64 would correspond to a dist of
centos, arelease of 6, and an arch of amdé64.

Therefore, to use the download template to create a new 64-bit CentOS 6 container, the following command can
be used:

salt myminion lxc.create containerl template=download options='{dist: centos, release: $, arch: amdé:

Note: These command-line options can be placed into a container profile, like so:

1xc.container_profile.cent6:
template: download
options:
dist: centos
release: 6
arch: amdé64

130 Chapter 3. Tutorials

http://images.linuxcontainers.org/images/

Salt Documentation, Release 2015.8.8

The options parameter is not supported in profiles for the 2014.7.x release cycle and earlier, so it would still need
to be provided on the command-line.

Cloning an Existing Container

To clone a container, use the [xc. clone function:

salt myminion 1lxc.clone container2 orig=containerl

Using a Container Image

While cloning is a good way to create new containers from a common base container, the source container that
is being cloned needs to already exist on the minion. This makes deploying a common container across minions
difficult. For this reason, Salt's L xc.create is capable of installing a container from a tar archive of another
container's rootfs. To create an image of a container named cent6, run the following command as root:

tar czf cent6.tar.gz -C /var/lib/1lxc/cent6 rootfs

Note: Before doing this, it is recommended that the container is stopped.

The resulting tarball can then be placed alongside the files in the salt fileserver and referenced using a salt://
URL. To create a container using an image, use the image parameter with [xc. create:

salt myminion lxc.create new-cent6 image=salt://path/to/cent6.tar.gz

Note: Making images of containers with LVM backing

For containers with LVM backing, the rootfs is not mounted, so it is necessary to mount it first before creating
the tar archive. When a container is created using LVM backing, an empty rootfs dir is handily created within
/var/lib/1lxc/container_name, so this can be used as the mountpoint. The location of the logical volume
for the container will be /dev/vgname/lvname, where vgname is the name of the volume group, and lvname
is the name of the logical volume. Therefore, assuming a volume group of vg1l, a logical volume of lxc-cent6,
and a container name of cent®6, the following commands can be used to create a tar archive of the rootfs:

mount /dev/vgl/lxc-cent6 /var/lib/lxc/cent6/rootfs
tar czf cent6.tar.gz -C /var/lib/1lxc/cent6 rootfs
umount /var/lib/1lxc/cent6/rootfs

Warning: One caveat of using this method of container creation is that /etc/hosts is left unmodified. This
could cause confusion for some distros if salt-minion is later installed on the container, as the functions that
determine the hostname take /etc/hosts into account.

Additionally, when creating an rootfs image, be sure to remove /etc/salt/minion_id and make sure that
id is not defined in /etc/salt/minion, as this will cause similar issues.

Initializing a New Container as a Salt Minion

The above examples illustrate a few ways to create containers on the CLI but often it is desirable to also have the
new container run as a Minion. To do this, the [xc. init function can be used. This function will do the following:

1. Create a new container

3.4. Advanced Topics 131

Salt Documentation, Release 2015.8.8

2. Optionally set password and/or DNS
3. Bootstrap the minion (using either salt-bootstrap or a custom command)

By default, the new container will be pointed at the same Salt Master as the host machine on which the container
was created. It will then request to authenticate with the Master like any other bootstrapped Minion, at which point
it can be accepted.

salt myminion 1xc.init testl profile=centos
salt-key -a testl

For even greater convenience, the LXC runner contains a runner function of the same name (I xc. init), which
creates a keypair, seeds the new minion with it, and pre-accepts the key, allowing for the new Minion to be created
and authorized in a single step:

salt-run 1lxc.init testl host=myminion profile=centos

Running Commands Within a Container

For containers which are not running their own Minion, commands can be run within the container in a manner
similar to using (cmd.run <salt.modules.cmdmod. run). The means of doing this have been changed sig-
nificantly in version 2015.5.0 (though the deprecated behavior will still be supported for a few releases). Both the
old and new usage are documented below.

2015.5.0 and Newer

New functions have been added to mimic the behavior of the functions in the cmd module. Below is a table with the
cmd functions and their { xc module equivalents:

Description cmd module Ixc module

Run a command and get all output cmd. run Ixc.run

Run a command and get just stdout cmd. run_stdout | lxc.run_stdout
Run a command and get just stderr cmd.run_stderr | lxc.run_stderr
Run a command and get just the retcode | cmd. retcode lxc.retcode
Run a command and get all information | cmd. run_all Ixc.run_all

2014.7.x and Earlier

Earlier Salt releases use a single function (I xc. run_cmd) to run commands within containers. Whether stdout,
stderr, etc. are returned depends on how the function is invoked.

To run a command and return the stdout:

‘salt myminion 1lxc.run_cmd webl 'tail /var/log/messages'

To run a command and return the stderr:

’salt myminion lxc.run_cmd webl 'tail /var/log/messages' stdout=False stderr=True

To run a command and return the retcode:

‘salt myminion 1xc.run_cmd webl 'tail /var/log/messages' stdout=False stderr=False

To run a command and return all information:

132 Chapter 3. Tutorials

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2015.8.8

salt myminion lxc.run_cmd webl 'tail /var/log/messages' stdout=True stderr=True

Container Management Using salt-cloud

Salt cloud uses under the hood the salt runner and module to manage containers, Please look at this chapter

Container Management Using States

Several states are being renamed or otherwise modified in version 2015.5.0. The information in this tutorial refers to
the new states. For 2014.7.x and earlier, please refer to the documentation for the LXC states.

Ensuring a Container Is Present

To ensure the existence of a named container, use the [xc.present state. Here are some examples:

Using a template
webl:
lxc.present:
- template: download
- options:
dist: centos
release: 6
arch: amdé64

Cloning
web2:
lxc.present:
- clone_from: web-base

Using a rootfs image
web3:
lxc.present:
- dimage: salt://path/to/cent6.tar.gz

Using profiles
web4:
lxc.present:
- profile: centos_web
- network_profile: centos

Warning: The lxc.present state will not modify an existing container (in other words, it will not re-create
the container). If an 1xc.present state is run on an existing container, there will be no change and the state
will return a True result.

The Ixc.present state also includes an optional runn-ing parameter which can be used to ensure that a container
is running/stopped. Note that there are standalone (xc. running and lxc.stopped states which can be used
for this purpose.

Ensuring a Container Does Not Exist

To ensure that a named container is not present, use the L xc. absent state. For example:

3.4. Advanced Topics 133

Salt Documentation, Release 2015.8.8

webl:
1xc.absent

Ensuring a Container is Running/Stopped/Frozen

Containers can be in one of three states:
« running - Container is running and active

« frozen - Container is running, but all process are blocked and the container is essentially non-active until the
container is " unfrozen"

. stopped - Container is not running

Salt has three states (L xc. running, Ixc. frozen, and Ixc. stopped) which can be used to ensure a container
is in one of these states:

webl:
1xc.running

Restart the container if it was already running
web2:
lxc.running:
- restart: True

web3:
1xc.stopped

Explicitly kill all tasks in container instead of gracefully stopping
web4:
1xc.stopped:
- kill: True

web5:
lxc.frozen

If container is stopped, do not start it (in which case the state will fail)
web6:
lxc.frozen:
- start: False

3.4.18 Using Salt with Stormpath

Stormpath is a user management and authentication service. This tutorial covers using SaltStack to manage and take
advantage of Stormpath's features.

External Authentication

Stormpath can be used for Salt's external authentication system. In order to do this, the master should be configured
with an apiid, apikey, and the ID of the applicatiion that is associated with the users to be authenticated:

stormpath:
apiid: 367DFSF4FRJ8767FSF4G34FGH
apikey: FEFREF43t3FEFRe/f323fwer4FWF3445gferWRWEerl
application: 786786FREFrefreg435fril

134 Chapter 3. Tutorials

https://stormpath.com/

Salt Documentation, Release 2015.8.8

Note: These values can be found in the Stormpath dashboard <https://api.stormpath.com/ui2/index.html#/>"_.

Users that are to be authenticated should be set up under the stormpath dict under external_auth:

external_auth:
stormpath:
larry:
- %
- '@runner'
- '@wheel'

Keep in mind that while Stormpath defaults the username associated with the account to the email address, it is
better to use a username without an @ sign in it.

Configuring Stormpath Modules

Stormpath accounts can be managed via either an execution or state module. In order to use either, a minion must
be configured with an API ID and key.

stormpath:
apiid: 367DFSF4FRJ8767FSF4G34FGH
apikey: FEFREF43t3FEFRe/f323fwer4FWF3445gferWRWEerl
directory: efreg435fr1786786FREFr
application: 786786FREFrefreg435frl

Some functions in the stormpath modules can make use of other options. The following options are also available.

directory

The ID of the directory that is to be used with this minion. Many functions require an ID to be specified to do their
work. However, if the ID of a directory is specified, then Salt can often look up the resource in question.

application

The ID of the application that is to be used with this minion. Many functions require an ID to be specified to do their
work. However, if the ID of a application is specified, then Salt can often look up the resource in question.

Managing Stormpath Accounts

With the stormpath configuration in place, Salt can be used to configure accounts (which may be thought of as
users) on the Stormpath service. The following functions are available.

stormpath.create_account

Create an account on the Stormpath service. This requires a directory_id as the first argument; it will not be
retrieved from the minion configuration. An ema‘il address, password, first name (givenName) and last name
(surname) are also required. For the full list of other parameters that may be specified, see:

http://docs.stormpath.com/rest/product-guide/#account-resource

When executed with no errors, this function will return the information about the account, from Stormpath.

3.4. Advanced Topics 135

http://docs.stormpath.com/rest/product-guide/#account-resource

Salt Documentation, Release 2015.8.8

salt myminion stormpath.create_account <directory_id> shemp@example.com letmein Shemp Hc#ward

stormpath.list_accounts

Show all accounts on the Stormpath service. This will return all accounts, regardless of directory, application, or
group.

salt myminion stormpath.list_accounts
T

stormpath.show_account

Show the details for a specific Stormpath account. An account_id is normally required. However, if am email
is provided instead, along with either adirectory_id, application_id, or group_id, then Salt will search
the specified resource to try and locate the account_-id.

salt myminion stormpath.show_account <account_id>
salt myminion stormpath.show_account email=<email> directory_id=<directory_id>

stormpath.update_account

Update one or more items for this account. Specifying an empty value will clear it for that account. This function
may be used in one of two ways. In order to update only one key/value pair, specify them in order:

salt myminion stormpath.update_account <account_id> givenName shemp
salt myminion stormpath.update_account <account_id> middleName ''

In order to specify multiple items, they need to be passed in as a dict. From the command line, it is best to do this as
a JSON string:

salt myminion stormpath.update_account <account_id> items='{"givenName": "Shemp"}
salt myminion stormpath.update_account <account_id> items='{"middlename": ""}

When executed with no errors, this function will return the information about the account, from Stormpath.

stormpath.delete_account

Delete an account from Stormpath.

salt myminion stormpath.delete_account <account_id>

stormpath.list_directories

Show all directories associated with this tenant.

salt myminion stormpath.list_directories

Using Stormpath States

Stormpath resources may be managed using the state system. The following states are available.

136 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

stormpath_account.present

Ensure that an account exists on the Stormpath service. All options that are available with the storm-
path.create_account function are available here. If an account needs to be created, then this function will
require the same fields that stormpath.create_account requires, including the password. However, if a
password changes for an existing account, it will NOT be updated by this state.

curly@example.com:
stormpath_account.present:
- directory_id: efreg435fr1786786FREFr
- password: badpass
- firstName: Curly
- surname: Howard
- nickname: curly

It is advisable to always set a nickname that is not also an email address, so that it can be used by Salt's external
authentication module.

stormpath_account.absent

Ensure that an account does not exist on Stormpath. As with stormpath_account.present, the name sup-
plied to this state is the email address associated with this account. Salt will use this, with or without the direc-
tory ID that is configured for the minion. However, lookups will be much faster with a directory ID specified.

3.5 Salt Virt

3.5.1 Salt as a Cloud Controller
In Salt 0.14.0, an advanced cloud control system were introduced, allow private cloud vms to be managed directly
with Salt. This system is generally referred to as Salt Virt.

The Salt Virt system already exists and is installed within Salt itself, this means that beside setting up Salt, no addi-
tional salt code needs to be deployed.

The main goal of Salt Virt is to facilitate a very fast and simple cloud. The cloud that can scale and fully featured.
Salt Virt comes with the ability to set up and manage complex virtual machine networking, powerful image, and
disk management, as well as virtual machine migration with and without shared storage.

This means that Salt Virt can be used to create a cloud from a blade center and a SAN, but can also create a cloud
out of a swarm of Linux Desktops without a single shared storage system. Salt Virt can make clouds from truly
commodity hardware, but can also stand up the power of specialized hardware as well.

Setting up Hypervisors

The first step to set up the hypervisors involves getting the correct software installed and setting up the hypervisor
network interfaces.

Installing Hypervisor Software

Salt Virt is made to be hypervisor agnostic but currently the only fully implemented hypervisor is KVM via libvirt.

The required software for a hypervisor is libvirt and kvm. For advanced features install libguestfs or gemu-nbd.

3.5. Salt Virt 137

Salt Documentation, Release 2015.8.8

Note: Libguestfs and gemu-nbd allow for virtual machine images to be mounted before startup and get pre-seeded

with configurations and a salt minion

This sls will set up the needed software for a hypervisor, and run the routines to set up the libvirt pki keys.

Note: Package names and setup used is Red Hat specific, different package names will be required for different

platforms

libvirt:
pkg.installed: []
file.managed:

- name: /etc/sysconfig/libvirtd
- contents: 'LIBVIRTD_ARGS="--listen"'

- require:
- pkg: libvirt
libvirt.keys:
- require:
- pkg: libvirt
service.running:
- name: libvirtd
- require:
- pkg: libvirt
- network: bro
- libvirt: 1libvirt
- watch:
- file: ldibvirt

libvirt-python:
pkg.installed: []

libguestfs:
pkg.installed:
- pkgs:
- libguestfs
- libguestfs-tools

Hypervisor Network Setup

The hypervisors will need to be running a network bridge to serve up network devices for virtual machines, this

formula will set up a standard bridge on a hypervisor connecting the bridge to eth0:

etho:
network.managed:
- enabled: True
- type: eth
- bridge: bro

bro:
network.managed:
- enabled: True
- type: bridge
- proto: dhcp
- require:
- network: eth0

138

Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

Virtual Machine Network Setup

Salt Virt comes with a system to model the network interfaces used by the deployed virtual machines; by default
a single interface is created for the deployed virtual machine and is bridged to br0. To get going with the default
networking setup, ensure that the bridge interface named br0 exists on the hypervisor and is bridged to an active
network device.

Note: To use more advanced networking in Salt Virt, read the Salt Virt Networking document:

Salt Virt Networking

Libvirt State

One of the challenges of deploying a libvirt based cloud is the distribution of libvirt certificates. These certificates
allow for virtual machine migration. Salt comes with a system used to auto deploy these certificates. Salt manages the
signing authority key and generates keys for libvirt clients on the master, signs them with the certificate authority
and uses pillar to distribute them. This is managed via the libvirt state. Simply execute this formula on the
minion to ensure that the certificate is in place and up to date:

Note: The above formula includes the calls needed to set up libvirt keys.

libvirt_keys:
libvirt.keys

Getting Virtual Machine Images Ready
Salt Virt, requires that virtual machine images be provided as these are not generated on the fly. Generating these
virtual machine images differs greatly based on the underlying platform.

Virtual machine images can be manually created using KVM and running through the installer, but this process is
not recommended since it is very manual and prone to errors.

Virtual Machine generation applications are available for many platforms:
vm-builder: https://wiki.debian.org/VMBuilder

See also:

vmbuilder-formula

Once virtual machine images are available, the easiest way to make them available to Salt Virt is to place them in
the Salt file server. Just copy an image into /srv/salt and it can now be used by Salt Virt.

For purposes of this demo, the file name centos. img will be used.

Existing Virtual Machine Images

Many existing Linux distributions distribute virtual machine images which can be used with Salt Virt. Please be
advised that NONE OF THESE IMAGES ARE SUPPORTED BY SALTSTACK.

CentOS These images have been prepared for OpenNebula but should work without issue with Salt Virt, only the
raw qcow image file is needed: http://wiki.centos.org/Cloud/OpenNebula

3.5. Salt Virt 139

https://wiki.debian.org/VMBuilder
https://github.com/saltstack-formulas/vmbuilder-formula
http://wiki.centos.org/Cloud/OpenNebula

Salt Documentation, Release 2015.8.8

Fedora Linux Images for Fedora Linux can be found here: http://fedoraproject.org/en/get-fedora#clouds
Ubuntu Linux Images for Ubuntu Linux can be found here: http://cloud-images.ubuntu.com/

Using Salt Virt

With hypervisors set up and virtual machine images ready, Salt can start issuing cloud commands.

Start by running a Salt Virt hypervisor info command:

salt-run virt.hyper_info

This will query what the running hypervisor stats are and display information for all configured hypervisors. This
command will also validate that the hypervisors are properly configured.

Now that hypervisors are available a virtual machine can be provisioned. The virt.init routine will create a
new virtual machine:

salt-run virt.init centosl 2 512 salt://centos.img

This command assumes that the CentOS virtual machine image is sitting in the root of the Salt fileserver. Salt Virt
will now select a hypervisor to deploy the new virtual machine on and copy the virtual machine image down to the
hypervisor.

Once the VM image has been copied down the new virtual machine will be seeded. Seeding the VMs involves setting
pre-authenticated Salt keys on the new VM and if needed, will install the Salt Minion on the new VM before it is
started.

Note: The biggest bottleneck in starting VMs is when the Salt Minion needs to be installed. Making sure that the
source VM images already have Salt installed will GREATLY speed up virtual machine deployment.

Now that the new VM has been prepared, it can be seen via the virt.query command:

salt-run virt.query

This command will return data about all of the hypervisors and respective virtual machines.

Now that the new VM is booted it should have contacted the Salt Master, a test.ping will reveal if the new VM
is running.

Migrating Virtual Machines

Salt Virt comes with full support for virtual machine migration, and using the libvirt state in the above formula
makes migration possible.

A few things need to be available to support migration. Many operating systems turn on firewalls when originally
set up, the firewall needs to be opened up to allow for libvirt and kvm to cross communicate and execution migration
routines. On Red Hat based hypervisors in particular port 16514 needs to be opened on hypervisors:

iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 16514 -j ACCEPT

Note: More in-depth information regarding distribution specific firewall settings can read in:

Opening the Firewall up for Salt

140 Chapter 3. Tutorials

http://fedoraproject.org/en/get-fedora#clouds
http://cloud-images.ubuntu.com/

Salt Documentation, Release 2015.8.8

Salt also needs an additional flag to be turned on as well. The virt.tunnel option needs to be turned on. This
flag tells Salt to run migrations securely via the libvirt TLS tunnel and to use port 16514. Without virt.tunnel
libvirt tries to bind to random ports when running migrations. To turn on virt.tunnel simple apply it to the

master config file:

‘ virt.tunnel: True

Once the master config has been updated, restart the master and send out a call to the minions to refresh the pillar

to pick up on the change:

’salt * saltutil.refresh_modules

Now, migration routines can be run! To migrate a VM, simply run the Salt Virt migrate routine:

’salt—run virt.migrate centos <new hypervisor>

VNC Consoles

Salt Virt also sets up VNC consoles by default, allowing for remote visual consoles to be oped up. The information
from a virt.query routine will display the vnc console port for the specific vms:

centos

CPU: 2

Memory: 524288

State: running

Graphics: vnc - hyper6:5900

Disk - vda:
Size: 2.0G
File: /srv/salt-images/ubuntu2/system.qcow2
File Format: qcow2

Nic - ac:de:48:98:08:77:
Source: bro
Type: bridge

The line Graphics: vnc - hyper6:5900 holds the key. First the port named, in this case 5900, will need to be available
in the hypervisor's firewall. Once the port is open, then the console can be easily opened via vncviewer:

vncviewer hyper6:5900

By default there is no VNC security set up on these ports, which suggests that keeping them firewalled and mandating
that SSH tunnels be used to access these VNC interfaces. Keep in mind that activity on a VNC interface that is
accessed can be viewed by any other user that accesses that same VNC interface, and any other user logging in can

also operate with the logged in user on the virtual machine.

Conclusion

Now with Salt Virt running, new hypervisors can be seamlessly added just by running the above states on new bare
metal machines, and these machines will be instantly available to Salt Virt.

3.5. Salt Virt

141

Salt Documentation, Release 2015.8.8

3.6 LXC

3.7 ESXi Proxy Minion

3.7.1 ESXi Proxy Minion

New in version 2015.8.4.

Note: This tutorial assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

This tutorial also assumes a basic understanding of Salt Proxy Minions. If you're unfamiliar with Salt's Proxy Minion
system, please read the Salt Proxy Minion documentation and the Salt Proxy Minion End-to-End Example tutorial.

The third assumption that this tutorial makes is that you also have a basic understanding of ESXi hosts. You can
learn more about ESXi hosts on VMware's various resources.

Salt's ESXi Proxy Minion allows a VMware ESXi host to be treated as an individual Salt Minion, without installing
a Salt Minion on the ESXi host.

Since an ESXi host may not necessarily run on an OS capable of hosting a Python stack, the ESXi host can't run a
regular Salt Minion directly. Therefore, Salt's Proxy Minion functionality enables you to designate another machine
to host a proxy process that " “proxies" communication from the Salt Master to the ESXi host. The master does not
know or care that the ESXi target is not a " "real" Salt Minion.

More in-depth conceptual reading on Proxy Minions can be found in the Proxy Minion section of Salt's documenta-
tion.

Salt's ESXi Proxy Minion was added in the 2015.8.4 release of Salt.

Note: Be aware that some functionality for the ESXi Proxy Minion may depend on the type of license attached the
ESXi host(s).

For example, certain services are only available to manipulate service state or policies with a VMware vSphere En-
terprise or Enterprise Plus license, while others are available with a Standard license. The ntpd service is restricted
to an Enterprise Plus license, while ssh is available via the Standard license.

Please see the vSphere Comparison page for more information.

Dependencies

Manipulation of the ESXi host via a Proxy Minion requires the machine running the Proxy Minion process to have
the ESXCLI package (and all of it's dependencies) and the pyVmomi Python Library to be installed.

ESXi Password

The ESXi Proxy Minion uses VMware's API to perform tasks on the host as if it was a regular Salt Minion. In order
to access the API that is already running on the ESXi host, the ESXi host must have a username and password that
is used to log into the host. The username is usually root. Before Salt can access the ESXi host via VMware's AP,
a default password must be set on the host.

142 Chapter 3. Tutorials

https://www.vmware.com/products/esxi-and-esx/overview
https://www.vmware.com/products/vsphere/compare

Salt Documentation, Release 2015.8.8

pyVmomi

The pyVmomi Python library must be installed on the machine that is running the proxy process. pyVmomi can be
installed via pip:

pip install pyVmomi

Note: Version 6.0 of pyVmomi has some problems with SSL error handling on certain versions of Python. If using
version 6.0 of pyVmomi, the machine that you are running the proxy minion process from must have either Python

2.6, Python 2.7.9, or newer. This is due to an upstream dependency in pyVmomi 6.0 that is not supported in Python
version 2.7 to 2.7.8. If the version of Python running the proxy process is not in the supported range, you will need
to install an earlier version of pyVmomi. See Issue #29537 for more information.

Based on the note above, to install an earlier version of pyVmomi than the version currently listed in PyP1i, run the
following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that the original ESXi Proxy Minion was developed against.

ESXCLI

Currently, about a third of the functions used for the ESXi Proxy Minion require the ESXCLI package be installed on
the machine running the Proxy Minion process.

The ESXCLI package is also referred to as the VMware vSphere CLI, or vCLIL. VMware provides vCLI package instal-
lation instructions for vSphere 5.5 and vSphere 6.0.

Once all of the required dependencies are in place and the vCLI package is installed, you can check to see if you can
connect to your ESXi host by running the following command:

esxcli -s <host-location> -u <username> -p <password> system syslog config get

If the connection was successful, ESXCLI was successfully installed on your system. You should see output related
to the ESXi host's syslog configuration.

Configuration

There are several places where various configuration values need to be set in order for the ESXi Proxy Minion to run
and connect properly.

Proxy Config File

On the machine that will be running the Proxy Minon process(es), a proxy config file must be in place. This file
should be located in the /etc/salt/ directory and should be named proxy. If the file is not there by default,
create it.

This file should contain the location of your Salt Master that the Salt Proxy will connect to.

Note: If you're running your ESXi Proxy Minion on version of Salt that is 2015.8.4 or newer, you also need to set
add_proxymodule_to_opts: False in your proxy config file. The need to specify this configuration will

be removed with Salt Boron, the next major feature release. See the New in 2015.8.2 section of the Proxy Minion
documentation for more information.

3.7. ESXi Proxy Minion 143

https://github.com/saltstack/salt/issues/29537
http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html
http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html
https://docs.saltstack.com/en/latest/topics/proxyminion/index.html#new-in-2015-8-2

Salt Documentation, Release 2015.8.8

Example Proxy Config File:

Jetc/salt/proxy

master: <salt-master-location>
add_proxymodule_to_opts: False

Pillar Profiles

Proxy minions get their configuration from Salt's Pillar. Every proxy must have a stanza in Pillar and a reference in
the Pillar top-file that matches the Proxy ID. At a minimum for communication with the ESXi host, the pillar should
look like this:

proxy:
proxytype: esxi
host: <ip or dns name of esxi host>
username: <ESXi username>
passwords:
- first_password
- second_password
- third_password

Some other optional settings are protocol and port. These can be added to the pillar configuration.

proxytype The proxytype key and value pair is critical, as it tells Salt which interface to load from the proxy
directory in Salt's install hierarchy, or from /srv/salt/_proxy on the Salt Master (if you have created your own
proxy module, for example). To use this ESXi Proxy Module, set this to esx1.

host The location, or ip/dns, of the ESXi host. Required.

username The username used to login to the ESXi host, such as root. Required.

passwords A list of passwords to be used to try and login to the ESXi host. At least one password in this list is
required.

The proxy integration will try the passwords listed in order. It is configured this way so you can have a regular
password and the password you may be updating for an ESXi host either via the vsphere.update_host_password
execution module function or via the esxi.password_present state function. This way, after the password is
changed, you should not need to restart the proxy minion--it should just pick up the the new password provided in
the list. You can then change pillar at will to move that password to the front and retire the unused ones.

Use-case/reasoning for using a list of passwords: You are setting up an ESXi host for the first time, and the host
comes with a default password. You know that you'll be changing this password during your initial setup from the
default to a new password. If you only have one password option, and if you have a state changing the password,
any remote execution commands or states that run after the password change will not be able to run on the host
until the password is updated in Pillar and the Proxy Minion process is restarted.

This allows you to use any number of potential fallback passwords.

Note: When a password is changed on the host to one in the list of possible passwords, the further down on the list
the password is, the longer individual commands will take to return. This is due to the nature of pyVmomi's login

system. We have to wait for the first attempt to fail before trying the next password on the list.

144 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

This scenario is especially true, and even slower, when the proxy minion first starts. If the correct password is not
the first password on the list, it may take up to a minute for test.ping to respond with a True result. Once the
initial authorization is complete, the responses for commands will be a little faster.

To avoid these longer waiting periods, SaltStack recommends moving the correct password to the top of the list and
restarting the proxy minion at your earliest convenience.

protocol If the ESXi host is not using the default protocol, set this value to an alternate protocol. Default is https.
For example:

port If the ESXi host is not using the default port, set this value to an alternate port. Default is 443.

Example Configuration Files

An example of all of the basic configurations that need to be in place before starting the Proxy Minion processes
includes the Proxy Config File, Pillar Top File, and any individual Proxy Minion Pillar files.

In this example, we'll assuming there are two ESXi hosts to connect to. Therefore, we'll be creating two Proxy Minion
config files, one config for each ESXi host.

Proxy Config File:

Jetc/salt/proxy

master: <salt-master-location>
add_proxymodule_to_opts: False

Pillar Top File:

/srv/pillar/top.sls

base:
'esxi-1":
- esxi-1
'esxi-2"':
- esxi-2

Pillar Config File for the first ESXi host, esxi-1:

/srv/pillar/esxi-1.sls

proxy:
proxytype: esxi
host: esxi-1l.example.com
username: 'root'
passwords:
- bad-password-1
- backup-bad-password-1

Pillar Config File for the second ESXi host, esxi-2:

/srv/pillar/esxi-2.sls

proxy:
proxytype: esxi
host: esxi-2.example.com

3.7. ESXi Proxy Minion 145

Salt Documentation, Release 2015.8.8

username: 'root'
passwords:

- bad-password-2

- backup-bad-password-2

Starting the Proxy Minion

Once all of the correct configuration files are in place, it is time to start the proxy processes!
1. First, make sure your Salt Master is running.

2. Start the first Salt Proxy, in debug mode, by giving the Proxy Minion process and ID that matches the config
file name created in the Configuration section.

salt-proxy --proxyid='esxi-1' -1 debug

1. Accept the esxi-1 Proxy Minion's key on the Salt Master:

salt-key -L

Accepted Keys:

Denied Keys:

Unaccepted Keys:

esxi-1

Rejected Keys:

#

salt-key -a esxi-1

The following keys are going to be accepted:
Unaccepted Keys:

esxi-1

Proceed? [n/Y] vy

Key for minion esxi-1 accepted.

1. Repeat for the second Salt Proxy, this time we'll run the proxy process as a daemon, as an example.

salt-proxy --proxyid='esxi-2' -d

1. Accept the esxi—2 Proxy Minion's key on the Salt Master:

salt-key -L

Accepted Keys:

esxi-1

Denied Keys:

Unaccepted Keys:

esxi-2

Rejected Keys:

#

salt-key -a esxi-1

The following keys are going to be accepted:
Unaccepted Keys:

esxi-2

Proceed? [n/Y] y

Key for minion esxi-1 accepted.

1. Check and see if your Proxy Minions are responding:

salt 'esxi-*' test.ping
esxi-1:
True

146 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

esxi-3:
True

Executing Commands

Now that you've configured your Proxy Minions and have them responding successfully to a test.ping, we can
start executing commands against the ESXi hosts via Salt.

It's important to understand how this particular proxy works, and there are a couple of important pieces to be aware
of in order to start running remote execution and state commands against the ESXi host via a Proxy Minion: the
vSphere Execution Module, the ESXi Execution Module, and the ESXi State Module.

vSphere Execution Module

The Salt.modules.vsphere is a standard Salt execution module that does the bulk of the work for the ESXi Proxy
Minion. If you pull up the docs for it you'll see that almost every function in the module takes credentials (username
and password) and a target host argument. When credentials and a host aren't passed, Salt runs commands
through pyVmomi or ESXCLTI against the local machine. If you wanted, you could run functions from this module
on any machine where an appropriate version of pyVmomi and ESXCLI are installed, and that machine would
reach out over the network and communicate with the ESXi host.

You'll notice that most of the functions in the vSphere module require a host, username, and password. These
parameters are contained in the Pillar files and passed through to the function via the proxy process that is already
running. You don't need to provide these parameters when you execute the commands. See the Running Remote
Execution Commands section below for an example.

ESXi Execution Module

In order for the Pillar information set up in the Configuration section above to be passed to the function call in the
vSphere Execution Module, the salt.modules.esxi execution module acts as a " “shim" between the vSphere execution
module functions and the proxy process.

The "“shim" takes the authentication credentials specified in the Pillar files and passes them through to the host,
username, password, and optional protocol and port options required by the vSphere Execution Module
functions.

If the function takes more positional, or keyword, arguments you can append them to the call. It's this shim that
speaks to the ESXi host through the proxy, arranging for the credentials and hostname to be pulled from the Pillar
section for the ESXi Proxy Minion.

Because of the presence of the shim, to lookup documentation for what functions you can use to interface with the
ESXi host, you'll want to look in salt.modules.vsphere instead of salt.modules.esxi.

Running Remote Execution Commands

To run commands from the Salt Master to execute, via the ESXi Proxy Minion, against the ESXi host, you use the
esxi.cmd <vsphere-function-name> syntax to call functions located in the vSphere Execution Module.
Both args and kwargs needed for various vsphere execution module functions must be passed through in a kwarg-
type manor. For example:

salt 'esxi-*x' esxi.cmd system_info
salt 'exsi-*' esxi.cmd get_service_running service_name='ssh'

3.7. ESXi Proxy Minion 147

Salt Documentation, Release 2015.8.8

ESXi State Module

The ESXi State Module functions similarly to other state modules. The " “shim" provided by the ESXi Execution
Module passes the necessary host, username, and password credentials through, so those options don't need
to be provided in the state. Other than that, state files are written and executed just like any other Salt state. See the
salt.modules.esxi state for ESXi state functions.

The follow state file is an example of how to configure various pieces of an ESXi host including enabling SSH,
uploading and SSH key, configuring a coredump network config, syslog, ntp, enabling VMotion, resetting a host
password, and more.

/srv/salt/configure-esxi.sls

configure-host-ssh:
esxi.ssh_configured:
- service_running: True
- ssh_key_file: /etc/salt/ssh_keys/my_key.pub
- service_policy: 'automatic'
- service_restart: True
- certificate_verify: True

configure-host-coredump:
esxi.coredump_configured:
- enabled: True
- dump_ip: 'my-coredump-ip.example.com'

configure-host-syslog:
esxi.syslog_configured:
- syslog_configs:
loghost: ssl://localhost:5432,tcp://10.1.0.1:1514
default-timeout: 120
- firewall: True
- reset_service: True
- reset_syslog_config: True
- reset_configs: loghost,default-timeout

configure-host-ntp:
esxi.ntp_configured:
- service_running: True
- ntp_servers:
- 192.174.1.100
- 192.174.1.200
- service_policy: 'automatic'
- service_restart: True

configure-vmotion:
esxi.vmotion_configured:
- enabled: True

configure-host-vsan:
esxi.vsan_configured:
- enabled: True
- add_disks_to_vsan: True

configure-host-password:
esxi.password_present:
- password: 'new-bad-password'

148 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

States are called via the ESXi Proxy Minion just as they would on a regular minion. For example:

salt 'esxi-*' state.sls configure-esxi test=true
salt 'esxi-*' state.sls configure-esxi

Relevant Salt Files and Resources

« ESX1 Proxy Minion

« ESX1 Execution Module

« ESX1 State Module

« Salt Proxy Minion Docs

« Salt Proxy Minion End-to-End Example

« vSphere Execution Module

3.8 Using Salt at scale

3.8.1 Using Salt at scale

The focus of this tutorial will be building a Salt infrastructure for handling large numbers of minions. This will
include tuning, topology, and best practices.

For how to install the Salt Master please go here: Installing saltstack

Note: This tutorial is intended for large installations, although these same settings won't hurt, it may not be worth
the complexity to smaller installations.

When used with minions, the term “many' refers to at least a thousand and “a few' always means 500.

For simplicity reasons, this tutorial will default to the standard ports used by Salt.

The Master

The most common problems on the Salt Master are:
1. too many minions authing at once
2. too many minions re-authing at once
3. too many minions re-connecting at once
4. too many minions returning at once
5. too few resources (CPU/HDD)

The first three are all "“thundering herd" problems. To mitigate these issues we must configure the minions to
back-off appropriately when the Master is under heavy load.

The fourth is caused by masters with little hardware resources in combination with a possible bug in ZeroMQ. At
least that's what it looks like till today (Issue 118651, Issue 5948, Mail thread)

To fully understand each problem, it is important to understand, how Salt works.

Very briefly, the Salt Master offers two services to the minions.

3.8. Using Salt at scale 149

http://docs.saltstack.com/topics/installation/index.html
https://github.com/saltstack/salt/issues/11865
https://github.com/saltstack/salt/issues/5948
https://groups.google.com/forum/#!searchin/salt-users/lots\protect \char "0024\relax 20of\protect \char "0024\relax 20minions/salt-users/WxothArv2Do/t12MigMQDFAJ

Salt Documentation, Release 2015.8.8

« a job publisher on port 4505
- an open port 4506 to receive the minions returns

All minions are always connected to the publisher on port 4505 and only connect to the open return port 4506 if
necessary. On an idle Master, there will only be connections on port 4505.

Too many minions authing

When the Minion service is first started up, it will connect to its Master's publisher on port 4505. If too many minions
are started at once, this can cause a " thundering herd". This can be avoided by not starting too many minions at
once.

The connection itself usually isn't the culprit, the more likely cause of master-side issues is the authentication that
the Minion must do with the Master. If the Master is too heavily loaded to handle the auth request it will time it out.
The Minion will then wait acceptance_wait_time to retry. If acceptance_wait_time_max is set then the Minion will
increase its wait time by the acceptance_wait_time each subsequent retry until reaching acceptance_wait_time_max.

Too many minions re-authing

This is most likely to happen in the testing phase of a Salt deployment, when all Minion keys have already been
accepted, but the framework is being tested and parameters are frequently changed in the Salt Master's configuration
file(s).

The Salt Master generates a new AES key to encrypt its publications at certain events such as a Master restart or the
removal of a Minion key. If you are encountering this problem of too many minions re-authing against the Master,
you will need to recalibrate your setup to reduce the rate of events like a Master restart or Minion key removal
(salt-key -d).

When the Master generates a new AES key, the minions aren't notified of this but will discover it on the next pub job
they receive. When the Minion receives such a job it will then re-auth with the Master. Since Salt does minion-side
filtering this means that all the minions will re-auth on the next command published on the master-- causing another
““thundering herd". This can be avoided by setting the

random_reauth_delay: 60

in the minions configuration file to a higher value and stagger the amount of re-auth attempts. Increasing this value
will of course increase the time it takes until all minions are reachable via Salt commands.

Too many minions re-connecting

By default the zmq socket will re-connect every 100ms which for some larger installations may be too quick. This
will control how quickly the TCP session is re-established, but has no bearing on the auth load.

To tune the minions sockets reconnect attempts, there are a few values in the sample configuration file (default
values)

recon_default: 1000
recon_max: 5000
recon_randomize: True

« recon_default: the default value the socket should use, i.e. 1000. This value is in milliseconds. (1000ms = 1
second)

« recon_max: the max value that the socket should use as a delay before trying to reconnect This value is in
milliseconds. (5000ms = 5 seconds)

150 Chapter 3. Tutorials

Salt Documentation, Release 2015.8.8

. recon_randomize: enables randomization between recon_default and recon_max
To tune this values to an existing environment, a few decision have to be made.
1. How long can one wait, before the minions should be online and reachable via Salt?
2. How many reconnects can the Master handle without a syn flood?

These questions can not be answered generally. Their answers depend on the hardware and the administrators
requirements.

Here is an example scenario with the goal, to have all minions reconnect within a 60 second time-frame on a Salt
Master service restart.

recon_default: 1000
recon_max: 59000
recon_randomize: True

Each Minion will have a randomized reconnect value between ‘recon_default' and “recon_default + recon_max’,
which in this example means between 1000ms and 60000ms (or between 1 and 60 seconds). The generated random-
value will be doubled after each attempt to reconnect (ZeroMQ default behavior).

Lets say the generated random value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds

reconnect 2: wait 22 seconds

reconnect 3: wait 33 seconds

reconnect 4: wait 44 seconds

reconnect 5: wait 55 seconds

reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds

reconnect 8: wait 22 seconds

reconnect 9: wait 33 seconds

reconnect x: etc.

With a thousand minions this will mean

1000/60 = ~16

round about 16 connection attempts a second. These values should be altered to values that match your environment.
Keep in mind though, that it may grow over time and that more minions might raise the problem again.

Too many minions returning at once

This can also happen during the testing phase, if all minions are addressed at once with

$ salt * disk.usage

it may cause thousands of minions trying to return their data to the Salt Master open port 4506. Also causing a flood
of syn-flood if the Master can't handle that many returns at once.

This can be easily avoided with Salt's batch mode:

$ salt x disk.usage -b 50

This will only address 50 minions at once while looping through all addressed minions.

3.8. Using Salt at scale 151

Salt Documentation, Release 2015.8.8

Too few resources

The masters resources always have to match the environment. There is no way to give good advise without knowing
the environment the Master is supposed to run in. But here are some general tuning tips for different situations:

The Master is CPU bound

Salt uses RSA-Key-Pairs on the masters and minions end. Both generate 4096 bit key-pairs on first start. While the
key-size for the Master is currently not configurable, the minions keysize can be configured with different key-sizes.
For example with a 2048 bit key:

keysize: 2048

With thousands of decryptions, the amount of time that can be saved on the masters end should not be neglected.
See here for reference: Pull Request 9235 how much influence the key-size can have.

Downsizing the Salt Master's key is not that important, because the minions do not encrypt as many messages as
the Master does.

In installations with large or with complex pillar files, it is possible for the master to exhibit poor performance as a
result of having to render many pillar files at once. This exhibit itself in a number of ways, both as high load on the
master and on minions which block on waiting for their pillar to be delivered to them.

To reduce pillar rendering times, it is possible to cache pillars on the master. To do this, see the set of master
configuration options which are prefixed with pillar_cache.

Note: Caching pillars on the master may introduce security considerations. Be certain to read caveats outlined in
the master configuration file to understand how pillar caching may affect a master's ability to protect sensitive data!

The Master is disk 10 bound

By default, the Master saves every Minion's return for every job in its job-cache. The cache can then be used later,
to lookup results for previous jobs. The default directory for this is:

cachedir: /var/cache/salt

and then in the /proc directory.

Each job return for every Minion is saved in a single file. Over time this directory can grow quite large, depending
on the number of published jobs. The amount of files and directories will scale with the number of jobs published
and the retention time defined by

‘ keep_jobs: 24

’250 jobs/day * 2000 minions returns = 500.000 files a day

If no job history is needed, the job cache can be disabled:

’ job_cache: False

If the job cache is necessary there are (currently) 2 options:

« ext_job_cache: this will have the minions store their return data directly into a returner (not sent through the
Master)

« master_job_cache (New in 2014.7.0): this will make the Master store the job data using a returner (instead of
the local job cache on disk).

152 Chapter 3. Tutorials

https://github.com/saltstack/salt/pull/9235

CHAPTER 4

Targeting Minions

Targeting minions is specifying which minions should run a command or execute a state by matching against host-
names, or system information, or defined groups, or even combinations thereof.

For example the command salt webl apache.signal restart to restart the Apache httpd server specifies
the machine web1 as the target and the command will only be run on that one minion.

Similarly when using States, the following fop file specifies that only the web1 minion should execute the contents
of webserver.sls:

base:
'webl':
- webserver

There are many ways to target individual minions or groups of minions in Salt:

4.1 Matching the minion 1id

Each minion needs a unique identifier. By default when a minion starts for the first time it chooses its FODN (fully
qualified domain name) as that identifier. The minion id can be overridden via the minion's 1d configuration setting.

Tip: minion id and minion keys

The minion id is used to generate the minion's public/private keys and if it ever changes the master must then accept
the new key as though the minion was a new host.

4.1.1 Globbing

The default matching that Salt utilizes is shell-style globbing around the minion id. This also works for
states in the top file.

Note: You must wrap sa'lt calls that use globbing in single-quotes to prevent the shell from expanding the globs
before Salt is invoked.

Match all minions:

salt '+x' test.ping

Match all minions in the example.net domain or any of the example domains:

153

http://docs.python.org/2/library/fnmatch.html#module-fnmatch

Salt Documentation, Release 2015.8.8

salt 'x.example.net' test.ping
salt 'x.example.x' test.ping

Match all the webN minions in the examplenet domain (webl.example.net, web2.example.net ...
webN.example.net):

‘salt 'web?.example.net' test.ping

Match the web1 through web5 minions:

’salt 'web[1-5]"' test.ping

Match the web1 and web3 minions:

‘salt 'web[1,3]' test.ping

Match the web-x, web-y, and web—-z minions:

’salt 'web-[x-z]"' test.ping

Note: For additional targeting methods please review the compound matchers documentation.

4.1.2 Regular Expressions

Minions can be matched using Perl-compatible regular expressions (which is globbing on steroids and a ton
of caffeine).

Match both webl-prod and webl-devel minions:

‘salt -E 'webl-(prod|devel)' test.ping

When using regular expressions in a State's top file, you must specify the matcher as the first option. The following
example executes the contents of webserver.sls on the above-mentioned minions.

base:
'webl-(prod|devel)':
- match: pcre
- webserver

4.1.3 Lists

At the most basic level, you can specify a flat list of minion IDs:

’salt -L 'webl,web2,web3' test.ping

4.2 Grains

Salt comes with an interface to derive information about the underlying system. This is called the grains interface,
because it presents salt with grains of information. Grains are collected for the operating system, domain name, IP
address, kernel, OS type, memory, and many other system properties.

The grains interface is made available to Salt modules and components so that the right salt minion commands are
automatically available on the right systems.

154 Chapter 4. Targeting Minions

http://docs.python.org/2/library/re.html#module-re

Salt Documentation, Release 2015.8.8

Grain data is relatively static, though if system information changes (for example, if network settings are changed),
or if a new value is assigned to a custom grain, grain data is refreshed.

Note: Grains resolve to lowercase letters. For example, FOO, and foo target the same grain.

Important: See Is Targeting using Grain Data Secure? for important security information.

Match all CentOS minions:

‘salt -G 'os:CentOS' test.ping

Match all minions with 64-bit CPUs, and return number of CPU cores for each matching minion:

’salt -G 'cpuarch:x86_64"' grains.item num_cpus

Additionally, globs can be used in grain matches, and grains that are nested in a dictionary can be matched by
adding a colon for each level that is traversed. For example, the following will match hosts that have a grain called
ec2_tags, which itself is a dict with a key named environment, which has a value that contains the word
production:

salt -G 'ec2_tags:environment:*production*'

4.2.1 Listing Grains

Available grains can be listed by using the “grains.Is' module:

‘ salt 'x' grains.ls

Grains data can be listed by using the “grains.items' module:

‘salt 'x' grains.items

4.2.2 Grains in the Minion Config

Grains can also be statically assigned within the minion configuration file. Just add the option grains and pass
options to it:

grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

Then status data specific to your servers can be retrieved via Salt, or used inside of the State system for matching. It
also makes targeting, in the case of the example above, simply based on specific data about your deployment.

4.2.3 Grains in /etc/salt/grains

If you do not want to place your custom static grains in the minion config file, you can also put them in
/etc/salt/grains on the minion. They are configured in the same way as in the above example, only without
a top-level grains: key:

4.2. Grains 155

http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2015.8.8

roles:

- webserver

- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

4.2.4 Matching Grains in the Top File

With correctly configured grains on the Minion, the top file used in Pillar or during Highstate can be made very
efficient. For example, consider the following configuration:

'node_type:webserver':
- match: grain
- webserver

'node_type:postgres':
- match: grain
- postgres

'node_type:redis':
- match: grain
- redis

'node_type:1lb':
- match: grain
- 1b

For this example to work, you would need to have defined the grain node_type for the minions you wish to match.
This simple example is nice, but too much of the code is similar. To go one step further, Jinja templating can be used
to simplify the top file.

% set the_node_type = salt['grains.get']('node_type', '') %}

{% if the_node_type %}
'node_type: {{ the_node_type }}':
- match: grain
- {{ the_node_type }}
% endif %

Using Jinja templating, only one match entry needs to be defined.

Note: The example above uses the grains.get function to account for minions which do not have the
node_type grain set.

4.2.5 Writing Grains

The grains interface is derived by executing all of the *“public" functions found in the modules located in the grains
package or the custom grains directory. The functions in the modules of the grains must return a Python dict, where
the keys in the dict are the names of the grains and the values are the values.

Custom grains should be placed in a _grains directory located under the file_roots specified by the master
config file. The default path would be /srv/salt/_grains. Custom grains will be distributed to the minions
when state.apply is run, or by executing the saltutil.sync_grains or saltutil.sync_all func-
tions.

156 Chapter 4. Targeting Minions

http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2015.8.8

Grains are easy to write, and only need to return a dictionary. A common approach would be code something similar
to the following:

#!/usr/bin/env python
def yourfunction():
initialize a grains dictionary

grains = {}

Some code for logic that sets grains like
grains['yourcustomgrain'] = True
grains['anothergrain'] = 'somevalue'

return grains

Before adding a grain to Salt, consider what the grain is and remember that grains need to be static data. If the data
is something that is likely to change, consider using Pillar instead.

Warning: Custom grains will not be available in the top file until after the first highstate. To make custom grains
available on a minion's first highstate, it is recommended to use this example to ensure that the custom grains are
synced when the minion starts.

Loading Custom Grains

If you have multiple functions specifying grains that are called from a main function, be sure to prepend grain
function names with an underscore. This prevents Salt from including the loaded grains from the grain functions in
the final grain data structure. For example, consider this custom grain file:

#!/usr/bin/env python

def _my_custom_grain():
my_grain = {'foo': 'bar', 'hello': 'world'}
return my_grain

def main():
initialize a grains dictionary
grains = {}
grains['my_grains'] = _my_custom_grain()

return grains

The output of this example renders like so:

salt-call --local grains.items
local:
<Snipped for brevity>
my_grains:

hello:
world

However, if you don't prepend the my_custom_grain function with an underscore, the function will be rendered
twice by Salt in the items output: once for the my_custom_grain call itself, and again when it is called in the
main function:

salt-call --local grains.items
local:

4.2. Grains 157

Salt Documentation, Release 2015.8.8

<Snipped for brevity>
foo:

bar
<Snipped for brevity>
hello:

world
<Snipped for brevity>
my_grains:

4.2.6 Precedence
Core grains can be overridden by custom grains. As there are several ways of defining custom grains, there is an
order of precedence which should be kept in mind when defining them. The order of evaluation is as follows:

1. Core grains.

2. Custom grains in /etc/salt/grains.

3. Custom grains in /etc/salt/minion.

4. Custom grain modules in _grains directory, synced to minions.

Each successive evaluation overrides the previous ones, so any grains defined by custom grains modules synced
to minions that have the same name as a core grain will override that core grain. Similarly, grains from
/etc/salt/minion override both core grains and custom grain modules, and grains in _grains will override
any grains of the same name.

4.2.7 Examples of Grains

The core module in the grains package is where the main grains are loaded by the Salt minion and provides the
principal example of how to write grains:

https://github.com/saltstack/salt/blob/develop/salt/grains/core.py

4.2.8 Syncing Grains
Syncing grains can be done a number of ways, they are automatically synced when state.app'ly is called, or

(as noted above) the grains can be manually synced and reloaded by calling the saltutil.sync_grains or
saltutil.sync_all functions.

4.3 Targeting with Pillar

Pillar data can be used when targeting minions. This allows for ultimate control and flexibility when targeting
minions.

Note: To start using Pillar targeting it is required to make a Pillar data cache on Salt Master for each Minion via
following commands: salt '*' saltutil.refresh_pillarorsalt '*x' saltutil.sync_all. Also

158 Chapter 4. Targeting Minions

https://github.com/saltstack/salt/blob/develop/salt/grains/core.py

Salt Documentation, Release 2015.8.8

Pillar data cache will be populated during the highstate run. Once Pillar data changes, you must refresh the cache
by running above commands for this targeting method to work correctly.

Example:

salt -I 'somekey:specialvalue' test.ping

Like with Grains, it is possible to use globbing as well as match nested values in Pillar, by adding colons for each
level that is being traversed. The below example would match minions with a pillar named foo, which is a dict
containing a key bar, with a value beginning with baz:

’salt -I 'foo:bar:bazx' test.ping

4.4 Subnet/IP Address Matching

Minions can easily be matched based on IP address, or by subnet (using CIDR notation).

salt -S 192.168.40.20 test.ping
salt -S 10.0.0.0/24 test.ping

Ipcidr matching can also be used in compound matches

salt -C 'SE10.0.0.0/24 and GEos:Debian' test.ping

It is also possible to use in both pillar and state-matching

'172.16.0.0/12"':
- match: dipcidr
- dnternal

Note: Only IPv4 matching is supported at this time.

4.5 Compound matchers

Compound matchers allow very granular minion targeting using any of Salt's matchers. The default matcher is a
glob match, just as with CLI and top file matching. To match using anything other than a glob, prefix the match
string with the appropriate letter from the table below, followed by an @ sign.

Let- Match Type Example Alt

ter Delimiter?

G Grains glob GERos:Ubuntu Yes

E PCRE Minion E@web\d+\. (dev|ga]|prod)\.loc No
ID

P Grains PCRE P@os: (RedHat|Fedora|Cent0S) Yes

L List of L@minionl.example.com,minion3.domain.com or No
minions bl*.domain.com

I Pillar glob I@pdata: foobar Yes

] Pillar PCRE Jepdata:*(foo|bar)s Yes

S Subnet/IP S@192.168.1.0/24 or S@192.168.1.100 No
address

R Range cluster | R@%foo.bar No

4.4. Subnet/IP Address Matching 159

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://docs.python.org/2/library/fnmatch.html#module-fnmatch

Salt Documentation, Release 2015.8.8

Matchers can be joined using boolean and, or, and not operators.

For example, the following string matches all Debian minions with a hostname that begins with webserv, as well
as any minions that have a hostname which matches the regular expressionweb-dcl-srv.x*:

salt -C 'webserv* and GEos:Debian or E@web-dcl-srv.x' test.ping

That same example expressed in a top file looks like the following:

base:
'webservx and G@os:Debian or E@web-dcl-srv.x':
- match: compound
- webserver

New in version 2015.8.0.

Excluding a minion based on its ID is also possible:

’salt -C 'not web-dcl-srv' test.ping ‘

Versions prior to 2015.8.0 a leading not was not supported in compound matches. Instead, something like the
following was required:

’salt -C '# and not G@kernel:Darwin' test.ping ‘

Excluding a minion based on its ID was also possible:

‘salt -C 'x and not web-dcl-srv' test.ping ‘

4.5.1 Precedence Matching

Matchers can be grouped together with parentheses to explicitly declare precedence amongst groups.

salt -C '"(ms-1 or G@id:ms-3) and G@id:ms-3' test.ping

Note: Be certain to note that spaces are required between the parentheses and targets. Failing to obey this rule may
result in incorrect targeting!

4.5.2 Alternate Delimiters

New in version 2015.8.0.

Matchers that target based on a key value pair use a colon (:) as a delimiter. Matchers with a Yes in the Alt
Delimiters column in the previous table support specifying an alternate delimiter character.

This is done by specifying an alternate delimiter character between the leading matcher character and the @ pattern
separator character. This avoids incorrect interpretation of the pattern in the case that : is part of the grain or pillar
data structure traversal.

‘salt -C 'J|@foo|bar|rfoo:bar$ or J!@gitrepo!https://github.com:example/project.git’ tes#.p‘ing

4.6 Node groups

Nodegroups are declared using a compound target specification. The compound target documentation can be found
here.

160 Chapter 4. Targeting Minions

http://docs.python.org/2/library/re.html#module-re

Salt Documentation, Release 2015.8.8

The nodegroups master config file parameter is used to define nodegroups. Here's an example nodegroup config-
uration within /etc/salt/master:

nodegroups:
groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
group2: 'GRos:Debian and foo.domain.com'
group3: 'GERos:Debian and N@groupl'
group4:
- 'G@foo:bar'
—_ lorl
- 'G@foo:baz'

Note: The L within group1 is matching a list of minions, while the G in group2 is matching specific grains. See the
compound matchers documentation for more details.

New in version 2015.8.0.

Note: Nodgroups can reference other nodegroups as seen in group3. Ensure that you do not have circular refer-
ences. Circular references will be detected and cause partial expansion with a logged error message.

New in version 2015.8.0.

Compound nodegroups can be either string values or lists of string values. When the nodegroup is A string value
will be tokenized by splitting on whitespace. This may be a problem if whitespace is necessary as part of a pattern.
When a nodegroup is a list of strings then tokenization will happen for each list element as a whole.

To match a nodegroup on the CLL use the —N command-line option:

salt -N groupl test.ping

Note: The N@ classifier cannot be used in compound mathes within the CLI or top file, it is only recognized in the
nodegroups master config file parameter.

To match a nodegroup in your top file, make sure to put = match: nodegroup on the line directly following
the nodegroup name.

base:
groupl:
- match: nodegroup
- webserver

Note: When adding or modifying nodegroups to a master configuration file, the master must be restarted for those
changes to be fully recognized.

A limited amount of functionality, such as targeting with -N from the command-line may be available without a
restart.

4.6.1 Using Nodegroups in SLS files

To use Nodegroups in Jinja logic for SLS files, the pillar_opts optionin /etc/salt/master must be set to
*“True". This will pass the master's configuration as Pillar data to each minion.

Note: If the master's configuration contains any sensitive data, this will be passed to each minion. Do not enable
this option if you have any configuration data that you do not want to get on your minions.

4.6. Node groups 161

Salt Documentation, Release 2015.8.8

Also, if you make changes to your nodegroups, you might needtorun salt 'x' saltutil.refresh_pillar
after restarting the master.

Once pillar_opts is enabled, you can find the nodegroups under the "“master" pillar. To make sure that only the
correct minions are targeted, you should use each matcher for the nodegroup definition. For example, to check if a
minion is in the "webserver' nodegroup:

nodegroups:
webserver: 'G@os:Debian and L@minionl,minion2’'

% if grains.id in salt['pillar.get']('master:nodegroups:webserver', [])
and grains.os in salt['pillar.get']('master:nodegroups:webserver', []) %}

% endif %}

Note: If you do not include all of the matchers used to define a nodegroup, Salt might incorrectly target minions
that meet some of the nodegroup requirements, but not all of them.

4.7 Batch Size

The -b (or ——batch-s1ze) option allows commands to be executed on only a specified number of minions at a
time. Both percentages and finite numbers are supported.

salt 'x' -b 10 test.ping

salt -G 'os:RedHat' --batch-size 25% apache.signal restart

This will only run test.ping on 10 of the targeted minions at a time and then restart apache on 25% of the minions
matching os : RedHat at a time and work through them all until the task is complete. This makes jobs like rolling
web server restarts behind a load balancer or doing maintenance on BSD firewalls using carp much easier with salt.

The batch system maintains a window of running minions, so, if there are a total of 150 minions targeted and the
batch size is 10, then the command is sent to 10 minions, when one minion returns then the command is sent to one
additional minion, so that the job is constantly running on 10 minions.

4.8 SECO Range

SECO range is a cluster-based metadata store developed and maintained by Yahoo!
The Range project is hosted here:

https://github.com/ytoolshed/range

Learn more about range here:

https://github.com/ytoolshed/range/wiki/

4.8.1 Prerequisites

To utilize range support in Salt, a range server is required. Setting up a range server is outside the scope of this
document. Apache modules are included in the range distribution.

162 Chapter 4. Targeting Minions

https://github.com/ytoolshed/range
https://github.com/ytoolshed/range/wiki/

Salt Documentation, Release 2015.8.8

With a working range server, cluster files must be defined. These files are written in YAML and define hosts contained
inside a cluster. Full documentation on writing YAML range files is here:

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Additionally, the Python seco range libraries must be installed on the salt master. One can verify that they have been
installed correctly via the following command:

python -c 'import seco.range'

If no errors are returned, range is installed successfully on the salt master.

4.8.2 Preparing Salt

Range support must be enabled on the salt master by setting the hostname and port of the range server inside the
master configuration file:

range_server: my.range.server.com:80

Following this, the master must be restarted for the change to have an effect.

4.8.3 Targeting with Range

Once a cluster has been defined, it can be targeted with a salt command by using the -R or —-range flags.

For example, given the following range YAML file being served from a range server:

$ cat /etc/range/test.yaml
CLUSTER: hostl..100.test.com
APPS:

- frontend

- backend

- mysql

One might target host1 through host100 in the test.com domain with Salt as follows:

|salt ——range %test:CLUSTER test.ping

The following salt command would target three hosts: frontend, backend, and mysq1:

’salt --range %test:APPS test.ping

4.8. SECO Range 163

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Salt Documentation, Release 2015.8.8

164 Chapter 4. Targeting Minions

CHAPTER 5

Storing Static Data in the Pillar

Pillar is an interface for Salt designed to offer global values that can be distributed to all minions. Pillar data is
managed in a similar way as the Salt State Tree.

Pillar was added to Salt in version 0.9.8

Note: Storing sensitive data

Unlike state tree, pillar data is only available for the targeted minion specified by the matcher type. This makes it
useful for storing sensitive data specific to a particular minion.

5.1 Declaring the Master Pillar

The Salt Master server maintains a pillar_roots setup that matches the structure of the file_roots used in the Salt file
server. Like the Salt file server the pillar_roots option in the master config is based on environments mapping
to directories. The pillar data is then mapped to minions based on matchers in a top file which is laid out in the same
way as the state top file. Salt pillars can use the same matcher types as the standard top file.

The configuration for the pillar_roots in the master config file is identical in behavior and function as
file_roots:

pillar_roots:
base:
- /srv/pillar

This example configuration declares that the base environment will be located in the /srv/pillar directory. It
must not be in a subdirectory of the state tree.

The top file used matches the name of the top file used for States, and has the same structure:

/srv/pillar/top.sls

base:
l*l:
- packages

In the above top file, it is declared that in the base environment, the glob matching all minions will have the pillar
data found in the packages pillar available to it. Assuming the pillar_roots value of /srv/pillar taken
from above, the packages pillar would be located at /srv/pillar/packages.sls.

Any number of matchers can be added to the base environment. For example, here is an expanded version of the
Pillar top file stated above:

165

Salt Documentation, Release 2015.8.8

/srv/pillar/top.sls:

base:
l*l:
- packages
'webx':
- vim

In this expanded top file, minions that match web* will have access to the /srv/pillar/pacakges.sls file,
as well as the /srv/pillar/vim.sls file.

Another example shows how to use other standard top matching types to deliver specific salt pillar data to minions
with different properties.

Here is an example using the grains matcher to target pillars to minions by their 0s grain:

dev:
'os:Debian':
- match: grain
- servers

/srv/pillar/packages.sls

{% if grains['os'] == 'RedHat' %}
apache: httpd

git: git

{% elif grains['os'] == 'Debian' %}
apache: apache2

git: git-core

{% endif %}

company: Foo Industries

Important: See Is Targeting using Grain Data Secure? for important security information.

The above pillar sets two key/value pairs. If a minion is running RedHat, then the apache key is set to httpd
and the g1t key is set to the value of git. If the minion is running Debian, those values are changed to apache2
and git-core respectively. All minions that have this pillar targeting to them via a top file will have the key of
company with a value of Foo Industries

Consequently this data can be used from within modules, renderers, State SLS files, and more via the shared pillar
dict:

apache:
pkg.installed:
- name: {{ pillar['apache'] }}

git:
pkg.installed:
- name: {{ pillar['git'] }}

Finally, the above states can utilize the values provided to them via Pillar. All pillar values targeted to a minion are
available via the “pillar' dictionary. As seen in the above example, Jinja substitution can then be utilized to access
the keys and values in the Pillar dictionary.

Note that you cannot just list key/value-information in top.sls. Instead, target a minion to a pillar file and then
list the keys and values in the pillar. Here is an example top file that illustrates this point:

166 Chapter 5. Storing Static Data in the Pillar

http://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2015.8.8

base:
I*I:

- common_pillar

And the actual pillar file at */srv/pillar/common_pillar.sls":

foo: bar
boo: baz

5.2 Pillar namespace flattened

The separate pillar files all share the same namespace. Given a top.sls of:

base:
l*l-

- packages

- services

a packages.s'ls file of:

|bind: bind9

and a services.sls file of:

‘bind: named

Then a request for the b1ind pillar will only return named; the bind9 value is not available. It is better to structure
your pillar files with more hierarchy. For example your package . s'ls file could look like:

packages:
bind: bind9

5.3 Pillar Namespace Merges

With some care, the pillar namespace can merge content from multiple pillar files under a single key, so long as
conflicts are avoided as described above.

For example, if the above example were modified as follows, the values are merged below a single key:

base:
I*Ic

- packages

- services

And a packages. sls file like:

bind:
package-name: bind9
version: 9.9.5

And a services.sls file like:

bind:
port: 53
listen-on: any

5.2. Pillar namespace flattened 167

Salt Documentation, Release 2015.8.8

The resulting pillar will be as follows:

$ salt-call pillar.get bind
local:
listen-on:
any
package-name:
bind9
port:
53
version:
9.9.5

Note: Pillar files are applied in the order they are listed in the top file. Therefore conflicting keys will be overwritten
in a "last one wins' manner! For example, in the above scenario conflicting key values in services will overwrite

those in packages because it's at the bottom of the list.

5.4 Including Other Pillars

New in version 0.16.0.

Pillar SLS files may include other pillar files, similar to State files. Two syntaxes are available for this purpose. The
simple form simply includes the additional pillar as if it were part of the same file:

include:
- users

The full include form allows two additional options -- passing default values to the templating engine for the included
pillar file as well as an optional key under which to nest the results of the included pillar:

include:
- users:
defaults:
sudo: ['bob', 'paul']
key: users

With this form, the included file (users.sls) will be nested within the "users' key of the compiled pillar. Additionally,
the “sudo' value will be available as a template variable to users.sls.

5.5 Viewing Minion Pillar

Once the pillar is set up the data can be viewed on the minion via the pillar module, the pillar module comes
with functions, pillar. items and pillar.raw. pillar.items will return a freshly reloaded pillar and
pillar.raw will return the current pillar without a refresh:

salt 'x' pillar.items

Note: Prior to version 0.16.2, this function is named pillar.data. This function name is still supported for
backwards compatibility.

168 Chapter 5. Storing Static Data in the Pillar

Salt Documentation, Release 2015.8.8

5.6 Pillar “"get" Function

New in version 0.14.0.

The pillar. get function works much in the same way as the get method in a python dict, but with an enhance-
ment: nested dict components can be extracted using a : delimiter.

If a structure like this is in pillar:

foo:
bar:
baz: qux

Extracting it from the raw pillar in an sls formula or file template is done this way:

’{{ pillar['foo']['bar']['baz'] }}

Now, with the new pillar.get function the data can be safely gathered and a default can be set, allowing the
template to fall back if the value is not available:

‘{{ salt['pillar.get']('foo:bar:baz', 'qux') }}

This makes handling nested structures much easier.

Note: pillar.get() vssalt['pillar.get']()

It should be noted that within templating, the pillar variable is just a dictionary. This means
that calling pillar.get() inside of a template will just use the default dictionary .get() function
which does not include the extra : delimiter functionality. It must be called using the above syntax
(salt['pillar.get']('foo:bar:baz', 'qux'))to get the salt function, instead of the default dictio-
nary behavior.

5.7 Refreshing Pillar Data

When pillar data is changed on the master the minions need to refresh the data locally. This is done with the
saltutil.refresh_pillar function.

salt '+' saltutil.refresh_pillar

This function triggers the minion to asynchronously refresh the pillar and will always return None.

5.8 Set Pillar Data at the Command Line

Pillar data can be set at the command line like the following example:

‘salt 'x' state.apply pillar='{"cheese": "spam"}'

This will add a Pillar key of cheese with its value set to spam.

Note: Be aware that when sending sensitive data via pillar on the command-line that the publication containing
that data will be received by all minions and will not be restricted to the targeted minions. This may represent a

security concern in some cases.

5.6. Pillar ““get" Function 169

Salt Documentation, Release 2015.8.8

5.9 Master Config In Pillar

For convenience the data stored in the master configuration file can be made available in all minion's pillars. This
makes global configuration of services and systems very easy but may not be desired if sensitive data is stored in the
master configuration. This option is disabled by default.

To enable the master config from being added to the pillar set pillar_opts to True:

’ pillar_opts: True

5.10 Minion Config in Pillar

Minion configuration options can be set on pillars. Any option that you want to modify, should be in the first level
of the pillars, in the same way you set the options in the config file. For example, to configure the MySQL root
password to be used by MySQL Salt execution module, set the following pillar variable:

’ mysql.pass: hardtoguesspassword

5.11 Master Provided Pillar Error

By default if there is an error rendering a pillar, the detailed error is hidden and replaced with:

‘Render‘ing SLS 'my.sls' failed. Please see master log for details.

The error is protected because it's possible to contain templating data which would give that minion information it
shouldn't know, like a password!

To have the master provide the detailed error that could potentially carry protected data set pil-
lar_safe_render_error to False:

pillar_safe_render_error: False

170 Chapter 5. Storing Static Data in the Pillar

CHAPTER 6

Reactor System

Salt version 0.11.0 introduced the reactor system. The premise behind the reactor system is that with Salt's events
and the ability to execute commands, a logic engine could be put in place to allow events to trigger actions, or more
accurately, reactions.

This system binds sls files to event tags on the master. These sls files then define reactions. This means that the
reactor system has two parts. First, the reactor option needs to be set in the master configuration file. The reactor
option allows for event tags to be associated with sls reaction files. Second, these reaction files use highdata (like
the state system) to define reactions to be executed.

6.1 Event System

A basic understanding of the event system is required to understand reactors. The event system is a local ZeroMQ
PUB interface which fires salt events. This event bus is an open system used for sending information notifying Salt
and other systems about operations.

The event system fires events with a very specific criteria. Every event has a tag. Event tags allow for fast top level
filtering of events. In addition to the tag, each event has a data structure. This data structure is a dict, which contains
information about the event.

6.2 Mapping Events to Reactor SLS Files

Reactor SLS files and event tags are associated in the master config file. By default this is /etc/salt/master, or
/etc/salt/master.d/reactor.conf.

New in version 2014.7.0: Added Reactor support for salt:// file paths.

In the master config section ‘reactor:' is a list of event tags to be matched and each event tag has a list of reactor SLS
files to be run.

reactor: # Master config section '"reactor"
- 'salt/minion/x/start': # Match tag "salt/minion/*/start"
- /srv/reactor/start.sls # Things to do when a minion starts
- /srv/reactor/monitor.sls # Other things to do
- 'salt/cloud/x/destroyed': # Globs can be used to matching tags
- /srv/reactor/destroy/*.sls # Globs can be used to match file names

171

Salt Documentation, Release 2015.8.8

- 'myco/custom/event/tag': # React to custom event tags
- salt://reactor/mycustom.sls # Put reactor files under file_roots

Reactor sls files are similar to state and pillar sls files. They are by default yaml + Jinja templates and are passed
familiar context variables.

They differ because of the addition of the tag and data variables.
« The tag variable is just the tag in the fired event.
+ The data variable is the event's data dict.

Here is a simple reactor sls:

% if data['id'] == 'mysqll' %}
highstate_run:
local.state.apply:
- tgt: mysqll
{% endif %

This simple reactor file uses Jinja to further refine the reaction to be made. If the id in the event data is mysql1 (in
other words, if the name of the minion is mysql1) then the following reaction is defined. The same data structure
and compiler used for the state system is used for the reactor system. The only difference is that the data is matched
up to the salt command API and the runner system. In this example, a command is published to the mysq1l1 minion
with a function of state.apply. Similarly, a runner can be called:

{% if data['data']['orchestrate'] == 'refresh' %}
orchestrate_run:

runner.state.orchestrate

% endif %3}

This example will execute the state.orchestrate runner and initiate an orchestrate execution.

6.3 Fire an event

To fire an event from a minion call event.send

‘salt—call event.send 'foo' '{orchestrate: refresh}'

After this is called, any reactor sls files matching event tag foo will execute with {{
data['data']['orchestrate'] }}equalto 'refresh'.

See salt.modules.event for more information.

6.4 Knowing what event is being fired

The best way to see exactly what events are fired and what data is available in each event is to use the state. event
runner.

See also:
Common Salt Events

Example usage:

salt-run state.event pretty=True

172 Chapter 6. Reactor System

Salt Documentation, Release 2015.8.8

Example output:

salt/job/20150213001905721678/new {

}

"_stamp": "2015-02-13T00:19:05.724583",
llargll: [] 5
"fun": "test.ping",
"jid": "20150213001905721678",
"minions": [
lljerr—yll
1,
lltgtll: ll*ll’
"tgt_type": "glob",
"user": "root"

salt/job/20150213001910749506/ret/jerry {

"_stamp": "2015-02-13T00:19:11.136730",

"ecmd": "_return",

"fun": "saltutil.find_job",

"fun_args": [
"201502130019605721678"

1,

ll-idll: lljerr—y"’

"jid": "20150213001910749506",

"retcode": 0,

"return": {3},

"success": true

6.5 Debugging the Reactor

The best window into the Reactor is to run the master in the foreground with debug logging enabled. The output
will include when the master sees the event, what the master does in response to that event, and it will also include
the rendered SLS file (or any errors generated while rendering the SLS file).

1. Stop the master.

2. Start the master manually:

salt-master -1 debug

. Look for log entries in the form:

[DEBUG] Gathering reactors for tag foo/bar

[DEBUG] Compiling reactions for tag foo/bar

[DEBUG] Rendered data from file: /path/to/the/reactor_file.sls:
<... Rendered output appears here. ...>

The rendered output is the result of the Jinja parsing and is a good way to view the result of referencing Jinja
variables. If the result is empty then Jinja produced an empty result and the Reactor will ignore it.

6.6 Understanding the Structure of Reactor Formulas

Le., when to use ‘arg’ and ‘kwarg" and when to specify the function arguments directly.

While the reactor system uses the same basic data structure as the state system, the functions that will be called
using that data structure are different functions than are called via Salt's state system. The Reactor can call Runner

6.5. Debugging the Reactor 173

Salt Documentation, Release 2015.8.8

modules using the runner prefix, Wheel modules using the wheel prefix, and can also cause minions to run Execution
modules using the local prefix.

Changed in version 2014.7.0: The cmd prefix was renamed to local for consistency with other parts of Salt. A
backward-compatible alias was added for cmd.

The Reactor runs on the master and calls functions that exist on the master. In the case of Runner and Wheel
functions the Reactor can just call those functions directly since they exist on the master and are run on the master.

In the case of functions that exist on minions and are run on minions, the Reactor still needs to call a function on
the master in order to send the necessary data to the minion so the minion can execute that function.

The Reactor calls functions exposed in Salt's Python API documentation. and thus the structure of Reactor files very
transparently reflects the function signatures of those functions.

6.6.1 Calling Execution modules on Minions

The Reactor sends commands down to minions in the exact same way Salt's CLI interface does. It calls a function
locally on the master that sends the name of the function as well as a list of any arguments and a dictionary of any
keyword arguments that the minion should use to execute that function.

Specifically, the Reactor calls the async version of this function. You can see that function has “arg' and “kwarg'
parameters which are both values that are sent down to the minion.

Executing remote commands maps to the LocalClient interface which is used by the salt command. This interface
more specifically maps to the cmd_async method inside of the LocalClient class. This means that the arguments
passed are being passed to the cmd_async method, not the remote method. A field starts with local to use the
LocalClient subsystem. The result is, to execute a remote command, a reactor formula would look like this:

clean_tmp:
local.cmd.run:
- tgt: '#!
- arg:

- rm -rf /tmp/*

The arg option takes a list of arguments as they would be presented on the command line, so the above declaration
is the same as running this salt command:

salt 'x' emd.run 'rm -rf /tmp/*'

Use the expr_form argument to specify a matcher:

clean_tmp:
local.cmd.run:
- tgt: 'os:Ubuntu'
- expr_form: grain
- arg:
- rm -rf /tmp/*

clean_tmp:
local.cmd.run:
- tgt: 'G@roles:hbase_master!'
- expr_form: compound
- arg:
- rm -rf /tmp/*

Any other parameters in the LocalClient () .cmd () method can be specified as well.

174 Chapter 6. Reactor System

Salt Documentation, Release 2015.8.8

6.6.2 Calling Runner modules and Wheel modules

Calling Runner modules and Wheel modules from the Reactor uses a more direct syntax since the function is being
executed locally instead of sending a command to a remote system to be executed there. There are no “arg' or "kwarg'
parameters (unless the Runner function or Wheel function accepts a parameter with either of those names.)

For example:

clear_the_grains_cache_for_all_minions:
runner.cache.clear_grains

If the runner takes arguments then they can be specified as well:

spin_up_more_web_machines:
runner.cloud.profile:
- prof: centos_6

- 1dnstances:
- webll # These VM names would be generated via Jinja in a
- webl2 # real-world example.

6.6.3 Passing event data to Minions or Orchestrate as Pillar
An interesting trick to pass data from the Reactor script to state.apply is to pass it as inline Pillar data since
both functions take a keyword argument named pillar.

The following example uses Salt's Reactor to listen for the event that is fired when the key for a new minion is
accepted on the master using salt-key.

/etc/salt/master.d/reactor.conf:

reactor:
- 'salt/key':
- /srv/salt/haproxy/react_new_minion.sls

The Reactor then fires a :state.apply command targeted to the HAProxy servers and passes the ID of the new
minion from the event to the state file via inline Pillar.

/srv/salt/haproxy/react_new_minion.sls:

% if data['act'] == 'accept' and data['id'].startswith('web') %}
add_new_minion_to_pool:
local.state.apply:
- tgt: 'haproxyx'
- arg:
- haproxy.refresh_pool
- kwarg:
pillar:
new_minion: {{ data['id'] }}

% endif %}

The above command is equivalent to the following command at the CLI:

salt 'haproxyx' state.apply haproxy.refresh_pool 'pillar={new_minion: minionid}’

This works with Orchestrate files as well:

call_some_orchestrate_file:
runner.state.orchestrate:
- mods: some_orchestrate_file

6.6. Understanding the Structure of Reactor Formulas 175

Salt Documentation, Release 2015.8.8

- pillar:
stuff: things

Which is equivalent to the following command at the CLI:

salt-run state.orchestrate some_orchestrate_file pillar="{stuff: things}'

Finally, that data is available in the state file using the normal Pillar lookup syntax. The following example is grabbing
web server names and IP addresses from Salt Mine. If this state is invoked from the Reactor then the custom Pillar
value from above will be available and the new minion will be added to the pool but with the disab’led flag so
that HAProxy won't yet direct traffic to it.

/srv/salt/haproxy/refresh_pool.sls:

{% set new_minion = salt['pillar.get']('new_minion') %}

listen web *:80
balance source
{% for server,ip in salt['mine.get']('web*', 'network.interfaces', ['eth0']).items(
{% if server == new_minion %}
server {{ server }} {{ ip }}:80 disabled
{% else %}
server {{ server }} {{ ip }}:80 check
{% endif %}
{% endfor %}

6.7 A Complete Example

In this example, we're going to assume that we have a group of servers that will come online at random and need
to have keys automatically accepted. We'll also add that we don't want all servers being automatically accepted. For
this example, we'll assume that all hosts that have an id that starts with "ink' will be automatically accepted and have
state.apply executed. On top of this, we're going to add that a host coming up that was replaced (meaning a
new key) will also be accepted.

Our master configuration will be rather simple. All minions that attempte to authenticate will match the tag of
salt/auth. When it comes to the minion key being accepted, we get a more refined tag that includes the minion id,
which we can use for matching.

/etc/salt/master.d/reactor.conf:

reactor:
- 'salt/auth':
- /srv/reactor/auth-pending.sls
- 'salt/minion/inkx/start':
- /srv/reactor/auth-complete.sls

In this sls file, we say that if the key was rejected we will delete the key on the master and then also tell the master
to ssh in to the minion and tell it to restart the minion, since a minion process will die if the key is rejected.

We also say that if the key is pending and the id starts with ink we will accept the key. A minion that is waiting on
a pending key will retry authentication every ten seconds by default.

/srv/reactor/auth-pending.sls

{# Ink server faild to authenticate -- remove accepted key #}
{% if not data['result'] and data['did'].startswith('ink') %}
minion_remove:

176 Chapter 6. Reactor System

%}

Salt Documentation, Release 2015.8.8

wheel.key.delete:
- match: {{ data['id'] }}
minion_rejoin:
local.cmd.run:
- tgt: salt-master.domain.tld
- arg:
- ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no "{{ data['id']]
{% endif %}

{# Ink server is sending new key -- accept this key #}
{% if 'act' in data and data['act'] == 'pend' and data['did'].startswith('ink') %}

minion_add:
wheel.key.accept:
- match: {{ data['id'] }}
% endif %}

No if statements are needed here because we already limited this action to just Ink servers in the master configuration.

/srv/reactor/auth-complete.sls:

{# When an Ink server connects, run state.apply. #}
highstate_run:
local.state.apply:
- tgt: {{ data['id'] }}
- ret: smtp

The above will also return the highstate result data using the smtp_return returner (use virtualname like when using
from the command line with --return). The returner needs to be configured on the minion for this to work. See
salt.returners.smtp_return documentation for that.

6.8 Syncing Custom Types on Minion Start

Salt will sync all custom types (by running a saltutil.sync_all) on every highstate. However, there is a
chicken-and-egg issue where, on the initial highstate, a minion will not yet have these custom types synced when
the top file is first compiled. This can be worked around with a simple reactor which watches for minion_start
events, which each minion fires when it first starts up and connects to the master.

On the master, create /srv/reactor/sync_grains.sls with the following contents:

sync_grains:
local.saltutil.sync_grains:
- tgt: {{ datal['id'] }}

And in the master config file, add the following reactor configuration:

reactor:
- "'minion_start':
- /srv/reactor/sync_grains.sls

This will cause the master to instruct each minion to sync its custom grains when it starts, making these grains
available when the initial highstate is executed.

Other types can be synced by replacing Tlocal.saltutil.sync_grains with Tlo-
cal.saltutil.sync_modules, local.saltutil.sync_all, or whatever else suits the intended
use case.

6.8. Syncing Custom Types on Minion Start 177

}ll

'sleep 10

Salt Documentation, Release 2015.8.8

178 Chapter 6. Reactor System

CHAPTER 7

The Salt Mine

The Salt Mine is used to collect arbitrary data from Minions and store it on the Master. This data is then made
available to all Minions via the salt.modules.mine module.

Mine data is gathered on the Minion and sent back to the Master where only the most recent data is maintained (if
long term data is required use returners or the external job cache).

7.1 Mine vs Grains

Mine data is designed to be much more up-to-date than grain data. Grains are refreshed on a very limited basis and
are largely static data. Mines are designed to replace slow peer publishing calls when Minions need data from other
Minions. Rather than having a Minion reach out to all the other Minions for a piece of data, the Salt Mine, running
on the Master, can collect it from all the Minions every mine-interval, resulting in almost fresh data at any given
time, with much less overhead.

7.2 Mine Functions

To enable the Salt Mine the mine_functions option needs to be applied to a Minion. This option can be applied
via the Minion's configuration file, or the Minion's Pillar. The mine_functions option dictates what functions
are being executed and allows for arguments to be passed in. If no arguments are passed, an empty list must be
added:

mine_functions:
test.ping: []
network.ip_addrs:
interface: etho
cidr: '10.0.0.0/8'

7.2.1 Mine Functions Aliases

Function aliases can be used to provide friendly names, usage intentions or to allow multiple calls of the same func-
tion with different arguments. There is a different syntax for passing positional and key-value arguments. Mixing
positional and key-value arguments is not supported.

New in version 2014.7.0.

179

Salt Documentation, Release 2015.8.8

mine_functions:
network.ip_addrs: [ethO]
networkplus.internal_ip_addrs: []
internal_ip_addrs:
mine_function: network.ip_addrs
cidr: 192.168.0.0/16
ip_list:
- mine_function: grains.get
- dp_interfaces

7.3 Mine Interval

The Salt Mine functions are executed when the Minion starts and at a given interval by the scheduler. The default
interval is every 60 minutes and can be adjusted for the Minion via the mine_interval option:

’ mine_interval: 60

7.4 Mine in Salt-SSH

As of the 2015.5.0 release of salt, salt-ssh supports mine. get.

Because the Minions cannot provide their own mine_functions configuration, we retrieve the args for specified
mine functions in one of three places, searched in the following order:

1. Roster data
2. Pillar
3. Master config

The mine_functions are formatted exactly the same as in normal salt, just stored in a different location. Here is
an example of a flat roster containing mine_functions:

test:
host: 104.237.131.248
user: root
mine_functions:
cmd.run: ['echo "hello!'"']
network.ip_addrs:
interface: etho

Note: Because of the differences in the architecture of salt-ssh, mine. get calls are somewhat inefficient. Salt must
make a new salt-ssh call to each of the Minions in question to retrieve the requested data, much like a publish call.

However, unlike publish, it must run the requested function as a wrapper function, so we can retrieve the function
args from the pillar of the Minion in question. This results in a non-trivial delay in retrieving the requested data.

7.5 Minions Targeting with Mine

The mine. get function supports various methods of Minions targeting to fetch Mine data from particular hosts,
such as glob or regular expression matching on Minion id (name), grains, pillars and compound matches. See the
salt.modules.mine module documentation for the reference.

180 Chapter 7. The Salt Mine

Salt Documentation, Release 2015.8.8

Note: Pillar data needs to be cached on Master for pillar targeting to work with Mine. Read the note in relevant

section.

7.6 Example

One way to use data from Salt Mine is in a State. The values can be retrieved via Jinja and used in the SLS file. The
following example is a partial HAProxy configuration file and pulls IP addresses from all Minions with the *“web"

grain to add them to the pool of load balanced servers.

/srv/pillar/top.sls

base:
'G@roles:web':
- web

/srv/pillar/web.sls:

mine_functions:
network.ip_addrs: [eth0O]

/etc/salt/minion.d/mine.conf:

’ mine_interval: 5

/srv/salt/haproxy.sls:

haproxy_config:
file.managed:
- name: /etc/haproxy/config
- source: salt://haproxy_config
- template: jinja

/srv/salt/haproxy_config

<...file contents snipped...>

{% for server, addrs in salt['mine.get']('roles:web',
server {{ server }} {{ addrs[0] }}:80 check

{% endfor %}

<...file contents snipped...>

'network.ip_addrs', expr_form='gra

7.6. Example

181

in')

| dicts

Salt Documentation, Release 2015.8.8

182 Chapter 7. The Salt Mine

CHAPTER 8

External Authentication System

Salt's External Authentication System (eAuth) allows for Salt to pass through command authorization to any external
authentication system, such as PAM or LDAP.

Note: eAuth using the PAM external auth system requires salt-master to be run as root as this system needs root
access to check authentication.

8.1 Access Control System

Note: When to Use client_acl and external_auth

client_aclis useful for allowing local system users to run Salt commands without giving them root access. If you
can log into the Salt master directly, then client_ac will allow you to use Salt without root privileges. If the local
system is configured to authenticate against a remote system, like LDAP or Active Directory, then client_acl
will interact with the remote system transparently.

external_auth is useful for salt-api or for making your own scripts that use Salt's Python APL It can be
used at the CLI (with the —a flag) but it is more cumbersome as there are more steps involved. The only time it is
useful at the CLI is when the local system is not configured to authenticate against an external service but you still
want Salt to authenticate against an external service.

The external authentication system allows for specific users to be granted access to execute specific functions on
specific minions. Access is configured in the master configuration file and uses the access control system:

external_auth:
pam:
thatch:
- 'webx':
- test.x
- network.x*
steve:
-

The above configuration allows the user thatch to execute functions in the test and network modules on the
minions that match the web” target. User steve is given unrestricted access to minion commands.

Salt respects the current PAM configuration in place, and uses the ‘login' service to authenticate.

Note: The PAM module does not allow authenticating as root.

183

Salt Documentation, Release 2015.8.8

To allow access to wheel modules or runner modules the following @ syntax must be used:

external_auth:

pam:
thatch:
- '@wheel' # to allow access to all wheel modules
- '@runner' # to allow access to all runner modules
- '@jobs' # to allow access to the jobs runner and/or wheel module

Note: The runner/wheel markup is different, since there are no minions to scope the acl to.

Note: Globs will not match wheel or runners! They must be explicitly allowed with @wheel or @runner.

The external authentication system can then be used from the command-line by any user on the same system as the
master with the —a option:

$ salt -a pam web* test.ping

The system will ask the user for the credentials required by the authentication system and then publish the command.

To apply permissions to a group of users in an external authentication system, append a % to the ID:

external_auth:
pam:
admins%:
— 1 * 1 :

- 'pkg.*'

Warning: All users that have external authentication privileges are allowed to run saltutil. findjob. Be
aware that this could inadvertently expose some data such as minion IDs.

8.2 Tokens

With external authentication alone, the authentication credentials will be required with every call to Salt. This can
be alleviated with Salt tokens.

Tokens are short term authorizations and can be easily created by just adding a —T option when authenticating:

$ salt -T -a pam web* test.ping

Now a token will be created that has a expiration of 12 hours (by default). This token is stored in a file named
salt_token in the active user's home directory.

Once the token is created, it is sent with all subsequent communications. User authentication does not need to be
entered again until the token expires.

Token expiration time can be set in the Salt master config file.

8.2.1 LDAP and Active Directory

Note: LDAP usage requires that you have installed python-ldap.

Salt supports both user and group authentication for LDAP (and Active Directory accessed via its LDAP interface)

184 Chapter 8. External Authentication System

Salt Documentation, Release 2015.8.8

8.3 OpenLDAP and similar systems

LDAP configuration happens in the Salt master configuration file.

Server configuration values and their defaults:

Server to auth against
auth.ldap.server: localhost

Port to connect via
auth.ldap.port: 389

Use TLS when connecting
auth.ldap.tls: False

LDAP scope level, almost always 2
auth.ldap.scope: 2

Server specified in URI format
auth.ldap.uri: "' # Overrides .ldap.server, .ldap.port, .ldap.tls above

Verify server's TLS certificate
auth.ldap.no_verify: False

Bind to LDAP anonymously to determine group membership
Active Directory does not allow anonymous binds without special configuration
auth.ldap.anonymous: False

FOR TESTING ONLY, this is a VERY insecure setting.

If this is True, the LDAP bind password will be ignored and
access will be determined by group membership alone with

the group memberships being retrieved via anonymous bind
auth.ldap.auth_by_group_membership_only: False

Require authenticating user to be part of this Organizational Unit
This can be blank if your LDAP schema does not use this kind of OU
auth.ldap.groupou: 'Groups'

Object Class for groups. An LDAP search will be done to find all groups of this
class to which the authenticating user belongs.
auth.ldap.groupclass: 'posixGroup'

Unique ID attribute name for the user
auth.ldap.accountattributename: 'memberuU-id'

These are only for Active Directory
auth.ldap.activedirectory: False
auth.ldap.persontype: 'person'

There are two phases to LDAP authentication. First, Salt authenticates to search for a users's Distinguished Name
and group membership. The user it authenticates as in this phase is often a special LDAP system user with read-only
access to the LDAP directory. After Salt searches the directory to determine the actual user's DN and groups, it
re-authenticates as the user running the Salt commands.

If you are already aware of the structure of your DNs and permissions in your LDAP store are set such that users
can look up their own group memberships, then the first and second users can be the same. To tell Salt this is the
case, omit the auth.ldap.bindpw parameter. You can template the binddn like this:

8.3. OpenLDAP and similar systems 185

Salt Documentation, Release 2015.8.8

auth.ldap.basedn: dc=saltstack,dc=com
auth.ldap.binddn: uid={{ username }},cn=users,cn=accounts,dc=saltstack,dc=com

Salt will use the password entered on the salt command line in place of the bindpw.

To use two separate users, specify the LDAP lookup user in the binddn directive, and include a bindpw like so

auth.ldap.binddn: uid=ldaplookup,cn=sysaccounts,cn=etc,dc=saltstack,dc=com
auth.ldap.bindpw: mypassword

As mentioned before, Salt uses a filter to find the DN associated with a user. Salt substitutes the {{ username }}
value for the username when querying LDAP

auth.ldap.filter: uid={{ username }}

For OpenLDAP, to determine group membership, one can specify an OU that contains group data. This is prepended
to the basedn to create a search path. Then the results are filtered against auth.ldap.groupclass, default
posixGroup, and the account's ‘name' attribute, nemberUid by default.

’ auth.ldap.groupou: Groups

8.4 Active Directory

Active Directory handles group membership differently, and does not utilize the groupou configuration variable.
AD needs the following options in the master config:

auth.ldap.activedirectory: True
auth.ldap.filter: sAMAccountName={{usernamel}}
auth.ldap.accountattributename: sAMAccountName
auth.ldap.groupclass: group
auth.ldap.persontype: person

To determine group membership in AD, the username and password that is entered when LDAP is requested as the
eAuth mechanism on the command line is used to bind to AD's LDAP interface. If this fails, then it doesn't matter
what groups the user belongs to, he or she is denied access. Next, the distinguishedName of the user is looked up
with the following LDAP search:

(&(<value of auth.ldap.accountattributename>={{username}})
(objectClass=<value of auth.ldap.persontype>)
)

This should return a distinguishedName that we can use to filter for group membership. Then the following LDAP
query is executed:

(&(member=<distinguishedName from search above>)
(objectClass=<value of auth.ldap.groupclass>)

)

external_auth:
ldap:
test_ldap_user:
l*l:

- test.ping

To configure an LDAP group, append a % to the ID:

186 Chapter 8. External Authentication System

Salt Documentation, Release 2015.8.8

external_auth:
ldap:
test_ldap_group%:
_ l*l:
- test.echo

8.4. Active Directory 187

Salt Documentation, Release 2015.8.8

188 Chapter 8. External Authentication System

CHAPTER 9

Access Control System

New in version 0.10.4.

Salt maintains a standard system used to open granular control to non administrative users to execute Salt commands.
The access control system has been applied to all systems used to configure access to non administrative control
interfaces in Salt.These interfaces include, the peer system, the external auth system and the client acl
system.

The access control system mandated a standard configuration syntax used in all of the three aforementioned systems.
While this adds functionality to the configuration in 0.10.4, it does not negate the old configuration.

Now specific functions can be opened up to specific minions from specific users in the case of external auth and
client ACLs, and for specific minions in the case of the peer system.

The access controls are manifested using matchers in these configurations:

client_acl:
fred:
- web\x*:
- pkg.list_pkgs
- test.x
- apache.x

In the above example, fred is able to send commands only to minions which match the specified glob target. This
can be expanded to include other functions for other minions based on standard targets (all matchers are supported
except the compound one).

external_auth:
pam:
dave:
- test.ping
- mongo*:
- network.x
- log*:
- network.x*
- pkg.*
- 'G@os:RedHat':
- kmod. *
steve:
- %

The above allows for all minions to be hit by test.ping by dave, and adds a few functions that dave can execute on
other minions. It also allows steve unrestricted access to salt commands.

Note: Functions are matched using regular expressions.

189

Salt Documentation, Release 2015.8.8

190 Chapter 9. Access Control System

CHAPTER 10

Job Management

New in version 0.9.7.

Since Salt executes jobs running on many systems, Salt needs to be able to manage jobs running on many systems.

10.1 The Minion proc System

Salt Minions maintain a proc directory in the Salt cachedir. The proc directory maintains files named after the
executed job ID. These files contain the information about the current running jobs on the minion and allow for jobs
to be looked up. This is located in the proc directory under the cachedir, with a default configuration it is under
/var/cache/salt/proc.

10.2 Functions in the saltutil Module

Salt 0.9.7 introduced a few new functions to the saltutil module for managing jobs. These functions are:
1. running Returns the data of all running jobs that are found in the proc directory.
find_job Returns specific data about a certain job based on job id.

signal_job Allows for a given jid to be sent a signal.

L

term_job Sends a termination signal (SIGTERM, 15) to the process controlling the specified job.
5. kill_job Sends a kill signal (SIGKILL, 9) to the process controlling the specified job.

These functions make up the core of the back end used to manage jobs at the minion level.

10.3 The jobs Runner

A convenience runner front end and reporting system has been added as well. The jobs runner contains functions
to make viewing data easier and cleaner.

The jobs runner contains a number of functions...

191

Salt Documentation, Release 2015.8.8

10.3.1 active

The active function runs saltutil.running on all minions and formats the return data about all running jobs in a much
more usable and compact format. The active function will also compare jobs that have returned and jobs that are
still running, making it easier to see what systems have completed a job and what systems are still being waited on.

’ # salt-run jobs.active

10.3.2 lookup_jid

When jobs are executed the return data is sent back to the master and cached. By default it is cached for 24 hours,
but this can be configured via the keep_jobs option in the master configuration. Using the lookup_jid runner will
display the same return data that the initial job invocation with the salt command would display.

‘# salt-run jobs.lookup_jid <job id number>

10.3.3 list_jobs

Before finding a historic job, it may be required to find the job id. list_jobs will parse the cached execution data and
display all of the job data for jobs that have already, or partially returned.

‘ # salt-run jobs.list_jobs

10.4 Scheduling Jobs

In Salt versions greater than 0.12.0, the scheduling system allows incremental executions on minions or the master.
The schedule system exposes the execution of any execution function on minions or any runner on the master.

Scheduling is enabled via the schedule option on either the master or minion config files, or via a minion's pillar
data. Schedules that are impletemented via pillar data, only need to refresh the minion's pillar data, for example by
using saltutil.refresh_pillar. Schedules implemented in the master or minion config have to restart the
application in order for the schedule to be implemented.

Note: The scheduler executes different functions on the master and minions. When running on the master the
functions reference runner functions, when running on the minion the functions specify execution functions.

A scheduled run has no output on the minion unless the config is set to info level or higher. Refer to minion logging
settings.

Specify maxrunning to ensure that there are no more than N copies of a particular routine running. Use this for jobs
that may be long-running and could step on each other or otherwise double execute. The default for maxrunning
is 1.

States are executed on the minion, as all states are. You can pass positional arguments and provide a yaml dict of
named arguments.

The below example will schedule the command state.apply httpd test=True every 3600 seconds (every
hour):

schedule:
jobl:
function: state.apply
seconds: 3600

192 Chapter 10. Job Management

Salt Documentation, Release 2015.8.8

args:
- httpd

kwargs:
test: True

This next example will schedule the command state.apply httpd test=True every 3600 seconds (every
hour) splaying the time between 0 and 15 seconds:

schedule:
jobl:
function: state.apply
seconds: 3600
args:
- httpd
kwargs:
test: True
splay: 15

Finally, the next example will schedule the command state.apply httpd test=True every 3600 seconds
(every hour) splaying the time between 10 and 15 seconds:

schedule:
jobl:
function: state.apply
seconds: 3600

args:
- httpd
kwargs:
test: True
splay:
start: 10
end: 15

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by the python dateutil library. This requires
python-dateutil to be installed on the minion.

For example, this will schedule the command state.apply httpd test=True at 5:00pm localtime on the
minion.

schedule:
jobl:
function: state.apply
args:
- httpd
kwargs:
test: True
when: 5:00pm

To schedule the command state.apply httpd test=True at 5pm on Monday, Wednesday, and Friday, and
3pm on Tuesday and Thursday, use the following:

schedule:
jobl:
function: state.apply
args:
- httpd
kwargs:
test: True

10.4. Scheduling Jobs 193

Salt Documentation, Release 2015.8.8

- Monday 5:00pm

- Tuesday 3:00pm

- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

Time ranges are also supported. For example, the below configuration will schedule the command state.apply
httpd test=True every 3600 seconds (every hour) between the hours of 8am and 5pm. The range parameter
must be a dictionary with the date strings using the dateutil format.

schedule:
jobl:
function: state.apply
seconds: 3600
args:
- httpd
kwargs:
test: True
range:
start: 8:00am
end: 5:00pm

Note: Using time ranges requires python-dateutil to be installed on the minion.

New in version 2014.7.0.

The scheduler also supports ensuring that there are no more than N copies of a particular routine running. Use this
for jobs that may be long-running and could step on each other or pile up in case of infrastructure outage.

The default for maxrunning is 1.

schedule:
long_running_job:
function: big_file_transfer
jid_include: True

10.4.1 run_on_start

New in version 2015.5.0.

By default, any job scheduled based on the startup time of the minion will run the scheduled job when the minion
starts up. Sometimes this is not the desired situation. Using the run_on_start parameter set to False will cause
the scheduler to skip this first run and wait until the next scheduled run.

schedule:
jobl:
function: state.sls
seconds: 3600
run_on_start: False
args:
- httpd
kwargs:
test: True

194 Chapter 10. Job Management

https://github.com/dateutil/dateutil#dateutil---powerful-extensions-to-datetime

Salt Documentation, Release 2015.8.8

10.5 States

schedule:
log-loadavg:
function: cmd.run
seconds: 3660
args:
- 'logger -t salt < /proc/loadavg'
kwargs:
stateful: False
shell: /bin/sh

10.6 Highstates

To set up a highstate to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
highstate:
function: state.apply
minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

10.7 Runners

Runner executions can also be specified on the master within the master configuration file:

schedule:
run_my_orch:
function: state.orchestrate

hours: 6
splay: 600
args:

- orchestration.my_orch

The above configuration is analogous to running salt-run state.orch orchestration.my_orch every
6 hours.

10.8 Scheduler With Returner

The scheduler is also useful for tasks like gathering monitoring data about a minion, this schedule option will gather
status data and send it to a MySQL returner database:

schedule:

uptime:
function: status.uptime
seconds: 60
returner: mysql

meminfo:
function: status.meminfo
minutes: 5
returner: mysql

10.5. States 195

Salt Documentation, Release 2015.8.8

Since specifying the returner repeatedly can be tiresome, the schedule_returner option is available to specify
one or a list of global returners to be used by the minions when scheduling.

In Salt versions greater than 0.12.0, the scheduling system allows incremental executions on minions or the master.
The schedule system exposes the execution of any execution function on minions or any runner on the master.

Scheduling is enabled via the schedule option on either the master or minion config files, or via a minion's pillar
data. Schedules that are impletemented via pillar data, only need to refresh the minion's pillar data, for example by
using saltutil.refresh_pillar. Schedules implemented in the master or minion config have to restart the
application in order for the schedule to be implemented.

Note: The scheduler executes different functions on the master and minions. When running on the master the
functions reference runner functions, when running on the minion the functions specify execution functions.

A scheduled run has no output on the minion unless the config is set to info level or higher. Refer to minion logging
settings.

Specify maxrunning to ensure that there are no more than N copies of a particular routine running. Use this for jobs
that may be long-running and could step on each other or otherwise double execute. The default for maxrunning
is 1.

States are executed on the minion, as all states are. You can pass positional arguments and provide a yaml dict of
named arguments.

The below example will schedule the command state.apply httpd test=True every 3600 seconds (every
hour):

schedule:
jobl:
function: state.apply
seconds: 3600
args:
- httpd
kwargs:
test: True

This next example will schedule the command state.apply httpd test=True every 3600 seconds (every
hour) splaying the time between 0 and 15 seconds:

schedule:
jobl:
function: state.apply
seconds: 3600
args:
- httpd
kwargs:
test: True
splay: 15

Finally, the next example will schedule the command state.apply httpd test=True every 3600 seconds
(every hour) splaying the time between 10 and 15 seconds:

schedule:
jobl:
function: state.apply
seconds: 3600
args:

196 Chapter 10. Job Management

Salt Documentation, Release 2015.8.8

- httpd
kwargs:
test: True
splay:
start: 10
end: 15

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by the python dateutil library. This requires
python-dateutil to be installed on the minion.

For example, this will schedule the command state.apply httpd test=True at 5:00pm localtime on the
minion.

schedule:
jobl:
function: state.apply
args:
- httpd
kwargs:
test: True
when: 5:00pm

To schedule the command state.apply httpd test=True at 5pm on Monday, Wednesday, and Friday, and
3pm on Tuesday and Thursday, use the following:

schedule:
jobl:
function: state.apply
args:
- httpd
kwargs:
test: True
when:
- Monday 5:00pm
- Tuesday 3:00pm
- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

Time ranges are also supported. For example, the below configuration will schedule the command state.apply
httpd test=True every 3600 seconds (every hour) between the hours of 8am and 5pm. The range parameter
must be a dictionary with the date strings using the dateutil format.

schedule:
jobl:
function: state.apply
seconds: 3600

args:
- httpd
kwargs:
test: True
range:

start: 8:00am
end: 5:00pm

Note: Using time ranges requires python-dateutil to be installed on the minion.

10.8. Scheduler With Returner 197

https://github.com/dateutil/dateutil#dateutil---powerful-extensions-to-datetime

Salt Documentation, Release 2015.8.8

New in version 2014.7.0.

The scheduler also supports ensuring that there are no more than N copies of a particular routine running. Use this
for jobs that may be long-running and could step on each other or pile up in case of infrastructure outage.

The default for maxrunningis 1

schedule:
long_running_job:
function: big_file_transfer
jid_include: True

10.8.1 run_on_start

New in version 2015.5.0.

By default, any job scheduled based on the startup time of the minion will run the scheduled job when the minion
starts up. Sometimes this is not the desired situation. Using the run_on_start parameter set to False will cause
the scheduler to skip this first run and wait until the next scheduled run.

schedule:
jobl:
function: state.sls
seconds: 3600
run_on_start: False
args:
- httpd
kwargs:
test: True

States

schedule:
log-loadavg:
function: cmd.run
seconds: 3660
args:
- 'logger -t salt < /proc/loadavg'
kwargs:
stateful: False
shell: /bin/sh

Highstates

To set up a highstate to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
highstate:
function: state.apply
minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

198 Chapter 10. Job Management

Salt Documentation, Release 2015.8.8

Runners

Runner executions can also be specified on the master within the master configuration file:

schedule:
run_my_orch:
function: state.orchestrate

hours: 6
splay: 600
args:

- orchestration.my_orch

The above configuration is analogous to running salt-run state.orch orchestration.my_orch every
6 hours.

Scheduler With Returner

The scheduler is also useful for tasks like gathering monitoring data about a minion, this schedule option will gather
status data and send it to a MySQL returner database:

schedule:

uptime:
function: status.uptime
seconds: 60
returner: mysql

meminfo:
function: status.meminfo
minutes: 5
returner: mysql

Since specifying the returner repeatedly can be tiresome, the schedule_returner option is available to specify
one or a list of global returners to be used by the minions when scheduling.

10.8. Scheduler With Returner 199

Salt Documentation, Release 2015.8.8

200 Chapter 10. Job Management

CHAPTER 11

Managing the Job Cache

The Salt Master maintains a job cache of all job executions which can be queried via the jobs runner. This job cache
is called the Default Job Cache.

11.1 Default Job Cache

A number of options are available when configuring the job cache. The default caching system uses local
storage on the Salt Master and can be found in the job cache directory (on Linux systems this is typically
/var/cache/salt/master/jobs). The default caching system is suitable for most deployments as it does
not typically require any further configuration or management.

The default job cache is a temporary cache and jobs will be stored for 24 hours. If the default cache needs to store
jobs for a different period the time can be easily adjusted by changing the keep_jobs parameter in the Salt Master
configuration file. The value passed in is measured via hours:

‘ keep_jobs: 24

11.2 Additional Job Cache Options

Many deployments may wish to use an external database to maintain a long term register of executed jobs. Salt
comes with two main mechanisms to do this, the master job cache and the external job cache.

See Storing Job Results in an External System.

201

Salt Documentation, Release 2015.8.8

202 Chapter 11. Managing the Job Cache

CHAPTER 12

Storing Job Results in an External System

After a job executes, job results are returned to the Salt Master by each Salt Minion. These results are stored in the
Default Job Cache.

In addition to the Default Job Cache, Salt provides two additional mechanisms to send job results to other systems
(databases, local syslog, and others):

« External Job Cache
« Master Job Cache

The major difference between these two mechanism is from where results are returned (from the Salt Master or Salt
Minion).

12.1 External Job Cache - Minion-Side Returner

When an External Job Cache is configured, data is returned to the Default Job Cache on the Salt Master like usual,
and then results are also sent to an External Job Cache using a Salt returner module running on the Salt Minion.

SQL
Redis
Syslog
ODBC

Master

return data

Minions

« Advantages: Data is stored without placing additional load on the Salt Master.

« Disadvantages: Each Salt Minion connects to the external job cache, which can result in a large number of
connections. Also requires additional configuration to get returner module settings on all Salt Minions.

203

Salt Documentation, Release 2015.8.8

12.2 Master Job Cache - Master-Side Returner

New in version 2014.7.0.

Instead of configuring an External Job Cache on each Salt Minion, you can configure the Master Job Cache to send
job results from the Salt Master instead. In this configuration, Salt Minions send data to the Default Job Cache as
usual, and then the Salt Master sends the data to the external system using a Salt returner module running on the
Salt Master.

SQL
Redis
Syslog
ODBC

Master

return data

Minions

« Advantages: A single connection is required to the external system. This is preferred for databases and similar
systems.

« Disadvantages: Places additional load on your Salt Master.

12.3 Configure an External or Master Job Cache

12.3.1 Step 1: Understand Salt Returners

Before you configure a job cache, it is essential to understand Salt returner modules (" returners"). Returners are
pluggable Salt Modules that take the data returned by jobs, and then perform any necessary steps to send the data to
an external system. For example, a returner might establish a connection, authenticate, and then format and transfer
data.

The Salt Returner system provides the core functionality used by the External and Master Job Cache systems, and
the same returners are used by both systems.

Salt currently provides many different returners that let you connect to a wide variety of systems. A complete
list is available at all Salt returners. Each returner is configured differently, so make sure you read and follow the
instructions linked from that page.

For example, the MySQL returner requires:
« A database created using provided schema (structure is available at MySQL returner)
« A user created with with privileges to the database
+ Optional SSL configuration

A simpler returner, such as Slack or HipChat, requires:

204 Chapter 12. Storing Job Results in an External System

Salt Documentation, Release 2015.8.8

+ An API key/version
« The target channel/room

« The username that should be used to send the message

12.3.2 Step 2: Configure the Returner

After you understand the configuration and have the external system ready, add the returner configuration settings
to the Salt Minion configuration file for the External Job Cache, or to the Salt Master configuration file for the Master
Job Cache.

For example, MySQL requires:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

Slack requires:

slack.channel: 'channel'
slack.api_key: 'key!'
slack.from_name: 'name'

After you have configured the returner and added settings to the configuration file, you can enable the External or
Master Job Cache.

12.3.3 Step 3: Enable the External or Master Job Cache

Configuration is a single line that specifies an already-configured returner to use to send all job data to an external
system.

External Job Cache

To enable a returner as the External Job Cache (Minion-side), add the following line to the Salt Master configuration
file:

‘ ext_job_cache: <returner>

For example:

‘ ext_job_cache: mysql

Note: When configuring an External Job Cache (Minion-side), the returner settings are added to the Minion con-
figuration file, but the External Job Cache setting is configured in the Master configuration file.

Master Job Cache

To enable a returner as a Master Job Cache (Master-side), add the following line to the Salt Master configuration file:

’ master_job_cache: <returner>

12.3. Configure an External or Master Job Cache 205

Salt Documentation, Release 2015.8.8

For example:

master_job_cache: mysql

Verify that the returner configuration settings are in the Master configuration file, and be sure to restart the salt-
master service after you make configuration changes. (service salt-master restart).

206 Chapter 12. Storing Job Results in an External System

CHAPTER 13

Storing Data in Other Databases

The SDB interface is designed to store and retrieve data that, unlike pillars and grains, is not necessarily minion-
specific. The initial design goal was to allow passwords to be stored in a secure database, such as one managed by
the keyring package, rather than as plain-text files. However, as a generic database interface, it could conceptually
be used for a number of other purposes.

SDB was added to Salt in version 2014.7.0.

13.1 SDB Configuration

In order to use the SDB interface, a configuration profile must be set up in either the master or minion configuration
file. The configuration stanza includes the name/ID that the profile will be referred to as, a driver setting, and any
other arguments that are necessary for the SDB module that will be used. For instance, a profile called mykeyring,
which uses the system service in the keyring module would look like:

mykeyring:
driver: keyring
service: system

It is recommended to keep the name of the profile simple, as it is used in the SDB URI as well.

13.2 SDB URIs

SDB is designed to make small database queries (hence the name, SDB) using a compact URL. This allows users to
reference a database value quickly inside a number of Salt configuration areas, without a lot of overhead. The basic
format of an SDB URI is:

sdb://<profile>/<args>

The profile refers to the configuration profile defined in either the master or the minion configuration file. The args
are specific to the module referred to in the profile, but will typically only need to refer to the key of a key/value
pair inside the database. This is because the profile itself should define as many other parameters as possible.

For example, a profile might be set up to reference credentials for a specific OpenStack account. The profile might
look like:

kevinopenstack:
driver: keyring
service: salt.cloud.openstack.kevin

207

Salt Documentation, Release 2015.8.8

And the URI used to reference the password might look like:

‘ sdb://kevinopenstack/password

13.3 Getting and Setting SDB Values

Once an SDB driver is configured, you can use the sdb execution module to set and get values from it. There are
two functions that will appear in any SDB module: set and get.

Getting a value requires only the SDB URI to be specified. To retrieve a value from the kevinopenstack profile
above, you would use:

salt-call sdb.get sdb://kevinopenstack/password

Some drivers use slightly more complex URIs. For instance, the vault driver requires the full path to where the
key is stored, followed by a question mark, followed by the key to be retrieved. If you were using a profile called
myvault, you would use a URI that looks like:

‘salt—call sdb.get 'sdb://myvault/secret/salt?saltstack’

Setting a value uses the same URI as would be used to retrieve it, followed by the value as another argument. For
the above myvault URI, you would set a new value using a command like:

’salt—call sdb.set 'sdb://myvault/secret/salt?saltstack' 'super awesome'

The sdb.get and sdb. set functions are also available in the runner system:

salt-run sdb.get 'sdb://myvault/secret/salt?saltstack’
salt-run sdb.set 'sdb://myvault/secret/salt?saltstack' 'super awesome'

13.4 Using SDB URIs in Files

SDB URIs can be used in both configuration files, and files that are processed by the renderer system (jinja, mako,
etc.). In a configuration file (such as /etc/salt/master, /etc/salt/minion, /etc/salt/cloud, etc.),
make an entry as usual, and set the value to the SDB URI. For instance:

’ mykey: sdb://myetcd/mykey

To retrieve this value using a module, the module in question must use the config.get function to retrieve
configuration values. This would look something like:

‘ mykey = __salt__['config.get']('mykey")

Templating renderers use a similar construct. To get the mykey value from above in Jinja, you would use:

\{{ salt['config.get']('mykey') }}

When retrieving data from configuration files using config. get, the SDB URI need only appear in the configu-
ration file itself.

If you would like to retrieve a key directly from SDB, you would call the sdb. get function directly, using the SDB
URL For instance, in Jinja:

{{ salt['sdb.get']('sdb://myetcd/mykey') 1}

208 Chapter 13. Storing Data in Other Databases

Salt Documentation, Release 2015.8.8

When writing Salt modules, it is not recommended to call sdb . get directly, as it requires the user to provide values
in SDB, using a specific URL Use config. get instead.

13.5 Writing SDB Modules

There is currently one function that MUST exist in any SDB module (get ()) and one that SHOULD exist (set_()).
If using a (set_()) function, a __func_alias__ dictionary MUST be declared in the module as well:

__func_alias__ = {
'set_': 'set',

}

This is because set is a Python built-in, and therefore functions should not be created which are called set (). The
__func_alias__ functionality is provided via Salt's loader interfaces, and allows legally-named functions to be
referred to using names that would otherwise be unwise to use.

The get () function is required, as it will be called via functions in other areas of the code which make use of the
sdb:// URL For example, the config. get function in the config execution module uses this function.

The set_ () function may be provided, but is not required, as some sources may be read-only, or may be otherwise
unwise to access via a URI (for instance, because of SQL injection attacks).

A simple example of an SDB module is salt/sdb/keyring_db. py, as it provides basic examples of most, if not
all, of the types of functionality that are available not only for SDB modules, but for Salt modules in general.

13.5. Writing SDB Modules 209

Salt Documentation, Release 2015.8.8

210 Chapter 13. Storing Data in Other Databases

CHAPTER 14

Salt Event System

The Salt Event System is used to fire off events enabling third party applications or external processes to react to
behavior within Salt.

The event system is comprised of a two primary components:
« The event sockets which publishes events.

« The event library which can listen to events and send events into the salt system.

14.1 Event types

14.1.1 Salt Master Events

These events are fired on the Salt Master event bus. This list is not comprehensive.

Authentication events
salt/auth
Fired when a minion performs an authentication check with the master.
Variables
« id -- The minion ID.
« act -- The current status of the minion key: accept, pend, reject.

+ pub -- The minion public key.

Note: Minions fire auth events on fairly regular basis for a number of reasons. Writing reactors to respond to
events through the auth cycle can lead to infinite reactor event loops (minion tries to auth, reactor responds

by doing something that generates another auth event, minion sends auth event, etc.). Consider reacting to
salt/keyor salt/minion/<MID>/start or firing a custom event tag instead.

Start events

salt/minion/<MID>/start
Fired every time a minion connects to the Salt master.

Variables dd -- The minion ID.

211

Salt Documentation, Release 2015.8.8

Key events
salt/key
Fired when accepting and rejecting minions keys on the Salt master.
Variables
+ 1d -- The minion ID.

« act -- The new status of the minion key: accept, pend, reject.

Warning: If a master is in auto_accept mode, salt/key events will not be fired when the keys are
accepted. In addition, pre-seeding keys (like happens through Salt-Cloud) will not cause firing of these events.

Job events
salt/job/<JID>/new
Fired as a new job is sent out to minions.
Variables

« jid -- The job ID.
«+ tgt -- The target of the job: *, a minion ID, GRos_family:RedHat, etc.
- tgt_type -- The type of targeting used: glob, grain, compound, etc.
« fun -- The function to run on minions: test.ping, network.interfaces, etc.
« arg -- A list of arguments to pass to the function that will be called.
« minions -- A list of minion IDs that Salt expects will return data for this job.

. user -- The name of the user that ran the command as defined in Salt's Client ACL or
external auth.

salt/job/<JID>/ret/<MID>
Fired each time a minion returns data for a job.

Variables
« id -- The minion ID.
« Jid -- The job ID.
« retcode -- The return code for the job.
« fun -- The function the minion ran. E.g., test.ping.
« return -- The data returned from the execution module.

salt/job/<JID>/prog/<MID>/<RUN NUM>
Fired each time a each function in a state run completes execution. Must be enabled using the state_events
option.

Variables
. data -- The data returned from the state module function.
« 1d -- The minion ID.

« jid -- The job ID.

212 Chapter 14. Salt Event System

Salt Documentation, Release 2015.8.8

Presence events

salt/presence/present
Events fired on a regular interval about currently connected, newly connected, or recently disconnected min-

ions. Requires the presence_events setting to be enabled.

Variables present -- A list of minions that are currently connected to the Salt master.

salt/presence/change
Fired when the Presence system detects new minions connect or disconnect.

Variables
« new -- A list of minions that have connected since the last presence event.

+ lost -- A list of minions that have disconnected since the last presence event.

Cloud Events

Unlike other Master events, salt-cloud events are not fired on behalf of a Salt Minion. Instead, salt-cloud
events are fired on behalf of a VM. This is because the minion-to-be may not yet exist to fire events to or also may
have been destroyed.

This behavior is reflected by the name variable in the event data for salt-cloud events as compared to the id
variable for Salt Minion-triggered events.

salt/cloud/<VM NAME>/creating
Fired when salt-cloud starts the VM creation process.

Variables
« name -- the name of the VM being created.
. event -- description of the event.
« provider -- the cloud provider of the VM being created.
« profile -- the cloud profile for the VM being created.

salt/cloud/<VM NAME>/deploying
Fired when the VM is available and salt-cloud begins deploying Salt to the new VM.

Variables
+ name -- the name of the VM being created.
- event -- description of the event.

- kwargs -- options available as the deploy script is invoked: conf_file, de-
ploy_command, display_ssh_output, host, keep_tmp, key_filename,
make_minion, minion_conf, name, parallel, preseed_minion_keys,
script, script_args, script_env, sock_dir, start_action, sudo,
tmp_dir, tty, username

salt/cloud/<VM NAME>/requesting
Fired when salt-cloud sends the request to create a new VM.

Variables
- event -- description of the event.

« location -- the location of the VM being requested.

14.1. Event types 213

Salt Documentation, Release 2015.8.8

- kwargs -- options available as the VM is being requested: Action, ImageId, In-
stanceType, KeyName, MaxCount, MinCount, SecurityGroup.1

salt/cloud/<VM NAME>/querying
Fired when salt-cloud queries data for a new instance.

Variables
- event -- description of the event.
« instance_1id -- the ID of the new VM.

salt/cloud/<VM NAME>/tagging
Fired when salt-cloud tags a new instance.

Variables
» event -- description of the event.
« tags -- tags being set on the new instance.

salt/cloud/<VM NAME>/waiting_for_ssh

Fired while the salt-cloud deploy process is waiting for ssh to become available on the new instance.

Variables
« event -- description of the event.
« ip_address -- IP address of the new instance.

salt/cloud/<VM NAME>/deploy_script
Fired once the deploy script is finished.

Variables event -- description of the event.

salt/cloud/<VM NAME>/created
Fired once the new instance has been fully created.

Variables
+ name -- the name of the VM being created.
- event -- description of the event.

« instance_1id -- the ID of the new instance.

« provider -- the cloud provider of the VM being created.

« profile -- the cloud profile for the VM being created.

salt/cloud/<VM NAME>/destroying
Fired when salt-cloud requests the destruction of an instance.

Variables
« name -- the name of the VM being created.
. event -- description of the event.
« instance_1id -- the ID of the new instance.

salt/cloud/<VM NAME>/destroyed
Fired when an instance has been destroyed.

Variables
« name -- the name of the VM being created.

« event -- description of the event.

214

Chapter 14. Salt Event System

Salt Documentation, Release 2015.8.8

« instance_1id -- the ID of the new instance.

14.2 Listening for Events

Salt's Event Bus is used heavily within Salt and it is also written to integrate heavily with existing tooling and scripts.
There is a variety of ways to consume it.

14.2.1 From the CLI

The quickest way to watch the event bus is by calling the state.event runner:

salt-run state.event pretty=True

That runner is designed to interact with the event bus from external tools and shell scripts. See the documentation
for more examples.

14.2.2 Remotely via the REST API

Salt's event bus can be consumed salt.netapi.rest_cherrypy.app.Events as an HTTP stream from
external tools or services.

curl -SsNk https://salt-api.example.com:8000/events?token=05A3

14.2.3 From Python

Python scripts can access the event bus only as the same system user that Salt is running as.

The event system is accessed via the event library and can only be accessed by the same system user that Salt is
running as. To listen to events a SaltEvent object needs to be created and then the get_event function needs to be
run. The SaltEvent object needs to know the location that the Salt Unix sockets are kept. In the configuration this is
the sock_d1ir option. The sock_d1i r option defaults to " /var/run/salt/master” on most systems.

The following code will check for a single event:

import salt.config
import salt.utils.event

opts = salt.config.client_config('/etc/salt/master")

event = salt.utils.event.get_event(
'master’',
sock_dir=opts['sock_dir'],
transport=opts['transport'],
opts=opts)

data = event.get_event()

Events will also use a " “tag". Tags allow for events to be filtered by prefix. By default all events will be returned. If
only authentication events are desired, then pass the tag " “salt/auth".

The get_event method has a default poll time assigned of 5 seconds. To change this time set the *“wait" option.

The following example will only listen for auth events and will wait for 10 seconds instead of the default 5.

14.2. Listening for Events 215

Salt Documentation, Release 2015.8.8

data = event.get_event(wait=10, tag='salt/auth')

To retrieve the tag as well as the event data, pass full=True:

evdata = event.get_event(wait=10, tag='salt/job', full=True)

tag, data = evdata['tag'], evdata['data']

Instead of looking for a single event, the iter_events method can be used to make a generator which will con-
tinually yield salt events.

The iter_events method also accepts a tag but not a wait time:

for data in event.iter_events(tag='salt/auth'):
print(data)

And finally event tags can be globbed, such as they can be in the Reactor, using the fnmatch library.

import fnmatch

import salt.config
import salt.utils.event

opts = salt.config.client_config('/etc/salt/master')

sevent = salt.utils.event.get_event(
'master’',
sock_dir=opts['sock_dir'],
transport=opts['transport'],
opts=opts)

while True:
ret = sevent.get_event(full=True)
if ret is None:
continue

if fnmatch.fnmatch(ret['tag'], 'salt/job/x/ret/*'):
do_something_with_job_return(ret['data'])

14.3 Firing Events

It is possible to fire events on either the minion's local bus or to fire events intended for the master.

To fire a local event from the minion on the command line call the event. fire execution function:

’salt—call event.fire '{"data": "message to be sent in the event"}' 'tag'

To fire an event to be sent up to the master from the minion call the event. send execution function. Remember
YAML can be used at the CLI in function arguments:

‘Salt—call event.send 'myco/mytag/success' '{success: True, message: "It works!"}'

If a process is listening on the minion, it may be useful for a user on the master to fire an event to it:

Job on minion
import salt.utils.event

216 Chapter 14. Salt Event System

Salt Documentation, Release 2015.8.8

event = salt.utils.event.MinionEvent(x*__opts__)

for evdata 1in event.iter_events(tag='customtag/'):
return evdata # do your processing here...

‘salt minionname event.fire '{"data'": "message for the minion"}' ’customtag/african/unla(#en’

14.4 Firing Events from Python

14.4.1 From Salt execution modules

Events can be very useful when writing execution modules, in order to inform various processes on the master when
a certain task has taken place. This is easily done using the normal cross-calling syntax:

/srv/salt/_modules/my_custom_module.py

def do_something():

rr

Do something and fire an event to the master when finished
CLI Example::

salt '"x' my_custom_module:do_something
rr
do something!
__salt__['event.send']('myco/my_custom_module/finished', {
'finished': True,
'message': "The something is finished!",

1)

14.4.2 From Custom Python Scripts

Firing events from custom Python code is quite simple and mirrors how it is done at the CLI:

import salt.client
caller = salt.client.Caller()

caller.sminion. functions['event.send'](
'myco/myevent/success',
{
'success': True,
'message': "It works!'",

14.4. Firing Events from Python 217

Salt Documentation, Release 2015.8.8

218 Chapter 14. Salt Event System

CHAPTER 15

Beacons

The beacon system allows the minion to hook into a variety of system processes and continually monitor these
processes. When monitored activity occurs in a system process, an event is sent on the Salt event bus that can be
used to trigger a reactor.

Salt beacons can currently monitor and send Salt events for many system activities, including:
« file system changes
« system load
- service status
« shell activity, such as user login
« network and disk usage

See beacon modules for a current list.

Note: Salt beacons are an event generation mechanism. Beacons leverage the Salt reactor system to make changes
when beacon events occur.

15.1 Configuring Beacons

Salt beacons do not require any changes to the system process that is being monitored, everything is configured
using Salt.

Beacons are typically enabled by placing a beacons: top level block in the minion configuration file:

beacons:
inotify:
/etc/httpd/conf.d: {}
/opt: {}

The beacon system, like many others in Salt, can also be configured via the minion pillar, grains, or local config file.

15.1.1 Beacon Monitoring Interval

Beacons monitor on a 1-second interval by default. To set a different interval, provide an interval argument to a
beacon. The following beacons run on 5- and 10-second intervals:

219

Salt Documentation, Release 2015.8.8

beacons:
inotify:
/etc/httpd/conf.d: {}
/opt: {}
interval: 5
load:
1m:
- 0.0
- 2.0
5m:

- 0.1
- 1.0
interval: 10

15.1.2 Avoiding Event Loops

It is important to carefully consider the possibility of creating a loop between a reactor and a beacon. For example,
one might set up a beacon which monitors whether a file is read which in turn fires a reactor to run a state which in
turn reads the file and re-fires the beacon.

To avoid these types of scenarios, the disable_during_state_run argument may be set. If a state run is in
progress, the beacon will not be run on its regular interval until the minion detects that the state run has completed,
at which point the normal beacon interval will resume.

beacons:
inotify:
/etc/passwd: {}
disable_during_state_run: True

15.2 Beacon Example

This example demonstrates configuring the inot i1y beacon to monitor a file for changes, and then create a backup
each time a change is detected.

Note: The inotify beacon requires Pyinotify on the minion, install it using salt myminion pkg.install
python-inotify.

First, on the Salt minion, add the following beacon configuration to /ect/salt/minion:

beacons:
inotify:
home/user/importantfile:
mask:
- modify

Replace user in the previous example with the name of your user account, and then save the configuration file and
restart the minion service.

Next, create a file in your home directory named importantfile and add some simple content. The beacon is
now set up to monitor this file for modifications.

220 Chapter 15. Beacons

Salt Documentation, Release 2015.8.8

15.2.1 View Events on the Master

On your Salt master, start the event runner using the following command:

salt-run state.event pretty=true

This runner displays events as they are received on the Salt event bus. To test the beacon you set up in the previous
section, make and save a modification to the importantfile you created. You'll see an event similar to the
following on the event bus:

salt/beacon/minionl/inotify/home/user/importantfile {
"_stamp": "2015-09-09T15:59:37.972753",
"data": {
"change'": "IN_IGNORED",
"id": "minionl",
"path": "/home/user/importantfile"
1,
"tag": "salt/beacon/minionl/inotify/home/user/importantfile"

}

This indicates that the event is being captured and sent correctly. Now you can create a reactor to take action when
this event occurs.

15.2.2 Create a Reactor

On your Salt master, create a file named srv/reactor/backup.sls. If the reactor directory doesn't exist,
create it. Add the following to backup.sls:

backup file:
cmd. file.copy:
- tgt: {{ data['data']['id'] }}
- arg:
- {{ data['data']['path'] }}
- {{ data['data']['path'] }}.bak

Next, add the code to trigger the reactor to ect/salt/master:

reactor:
- salt/beacon/x/inotify/*/importantfile:
- /srv/reactor/backup.sls

This reactor creates a backup each time a file named importantfile is modified on a minion that has the ino-
t1fy beacon configured as previously shown.

Note: You can have only one top level reactor section, so if one already exists, add this code to the existing
section. See Understanding the Structure of Reactor Formulas to learn more about reactor SLS syntax.

15.2.3 Start the Salt Master in Debug Mode

To help with troubleshooting, start the Salt master in debug mode:

service salt-master stop
salt-master -1 debug

When debug logging is enabled, event and reactor data are displayed so you can discover syntax and other issues.

15.2. Beacon Example 221

Salt Documentation, Release 2015.8.8

15.2.4 Trigger the Reactor

On your minion, make and save another change to importantfile. On the Salt master, you'll see debug messages
that indicate the event was received and the file. copy job was sent. When you list the directory on the minion,
you'll now see importantfile.bak.

All beacons are configured using a similar process of enabling the beacon, writing a reactor SLS, and mapping a
beacon event to the reactor SLS.

15.3 Writing Beacon Plugins

Beacon plugins use the standard Salt loader system, meaning that many of the constructs from other plugin systems
holds true, such as the __virtual__ function.

The important function in the Beacon Plugin is the beacon function. When the beacon is configured to run, this
function will be executed repeatedly by the minion. The beacon function therefore cannot block and should be as
lightweight as possible. The beacon also must return a list of dicts, each dict in the list will be translated into an
event on the master.

Please see the 1notify beacon as an example.

15.3.1 The beacon Function

The beacons system will look for a function named beacon in the module. If this function is not present then the
beacon will not be fired. This function is called on a regular basis and defaults to being called on every iteration of
the minion, which can be tens to hundreds of times a second. This means that the beacon function cannot block and
should not be CPU or IO intensive.

The beacon function will be passed in the configuration for the executed beacon. This makes it easy to establish a
flexible configuration for each called beacon. This is also the preferred way to ingest the beacon's configuration as
it allows for the configuration to be dynamically updated while the minion is running by configuring the beacon in
the minion's pillar.

15.3.2 The Beacon Return
The information returned from the beacon is expected to follow a predefined structure. The returned value needs to
be a list of dictionaries (standard python dictionaries are preferred, no ordered dicts are needed).

The dictionaries represent individual events to be fired on the minion and master event buses. Each dict is a single
event. The dict can contain any arbitrary keys but the “tag' key will be extracted and added to the tag of the fired
event.

The return data structure would look something like this:

[{'changes': ['/foo/bar'], 'tag': 'foo'},
{'changes': ['/foo/baz'], 'tag': 'bar'}]

15.3.3 Calling Execution Modules

Execution modules are still the preferred location for all work and system interaction to happen in Salt. For this
reason the _salt variable is available inside the beacon.

222 Chapter 15. Beacons

Salt Documentation, Release 2015.8.8

Please be careful when calling functions in __salt__, while this is the preferred means of executing complicated
routines in Salt not all of the execution modules have been written with beacons in mind. Watch out for execution

modules that may be CPU intense or IO bound. Please feel free to add new execution modules and functions to back
specific beacons.

15.3.4 Distributing Custom Beacons

Custom beacons can be distributed to minions using saltuti'l, see Dynamic Module Distribution.

15.3. Writing Beacon Plugins 223

Salt Documentation, Release 2015.8.8

224 Chapter 15. Beacons

CHAPTER 16

Salt Engines

New in version 2015.8.0.
Salt Engines are long-running, external system processes that leverage Salt.

salt

—_ —_—

- Engines have access to Salt configuration, execution modules, and runners (and

__runners__).

opts

« Engines are executed in a separate process that is monitored by Salt. If a Salt engine stops, it is restarted
automatically.

« Engines can run on the Salt master and on Salt minions.

Salt engines enhance and replace the external processes functionality.

16.1 Configuration

Salt engines are configured under an engines top-level section in your Salt master or Salt minion configuration.
Provide a list of engines and parameters under this section.

engines:
- logstash:
host: log.my_network.com
port: 5959

Salt engines must be in the Salt path, or you can add the engines_d1r option in your Salt master configuration
with a list of directories under which Salt attempts to find Salt engines.

16.2 Writing an Engine

An example Salt engine, https://github.com/saltstack/salt/blob/develop/salt/engines/test.py, is available in the Salt
source. To develop an engine, the only requirement is that your module implement the start () function.

225

https://github.com/saltstack/salt/blob/develop/salt/engines/test.py

Salt Documentation, Release 2015.8.8

226 Chapter 16. Salt Engines

CHAPTER 17

Running Custom Master Processes

Note: Salt engines are a new feature in 2015.8.0 that let you run custom processes on the Salt master and on Salt
minions. Salt engines provide more functionality than ext_processes by accepting arguments, and by providing

access to Salt config, execution modules, and runners.

In addition to the processes that the Salt master automatically spawns, it is possible to configure it to start additional

custom processes.

This is useful if a dedicated process is needed that should run throughout the life of the Salt master. For periodic
independent tasks, a scheduled runner may be more appropriate.

Processes started in this way will be restarted if they die and will be killed when the Salt master is shut down.

17.1 Example Configuration

Processes are declared in the master config file with the ext_processes option. Processes will be started in the order

they are declared.

ext_processes:
- mymodule.TestProcess
- mymodule.AnotherProcess

17.2 Example Process Class

Import python libs

import time

import logging

from multiprocessing 1import Process

Import Salt libs
from salt.utils.event import SaltEvent

log = logging.getlLogger(__name__)

class TestProcess(Process):
def __init__(self, opts):

227

Salt Documentation, Release 2015.8.8

Process.__init__(self)
self.opts = opts

def run(self):
self.event = SaltEvent('master', self.opts['sock_dir'])
i=0

while True:
self.event.fire_event({'iteration': i}, 'ext_processes/test{0}")
time.sleep(60)

228 Chapter 17. Running Custom Master Processes

CHAPTER 18

High Availability Features in Salt

Salt supports several features for high availability and fault tolerance. Brief documentation for these features is listed
alongside their configuration parameters in Configuration file examples.

18.1 Multimaster

Salt minions can connect to multiple masters at one time by configuring the master configuration parameter as
a YAML list of all the available masters. By default, all masters are " "hot", meaning that any master can direct
commands to the Salt infrastructure.

In a multimaster configuration, each master must have the same cryptographic keys, and minion keys must be
accepted on all masters separately. The contents of file_roots and pillar_roots need to be kept in sync with processes
external to Salt as well

A tutorial on setting up multimaster with " hot" masters is here:

Multimaster Tutorial

18.2 Multimaster with Failover

Changing the master_type parameter from str to failover will cause minions to connect to the first respond-
ing master in the list of masters. Every master_alive_interval seconds the minions will check to make sure
the current master is still responding. If the master does not respond, the minion will attempt to connect to the next
master in the list. If the minion runs out of masters, the list will be recycled in case dead masters have been restored.
Note that master_alive_interval must be present in the minion configuration, or else the recurring job to
check master status will not get scheduled.

Failover can be combined with PKI-style encrypted keys, but PKI is NOT REQUIRED to use failover.
Multimaster with PKI and Failover is discussed in this tutorial

master_type: failover canbe combined with master_shuffle: True to spread minion connections
across all masters (one master per minion, not each minion connecting to all masters). Adding Salt Syndics into the
mix makes it possible to create a load-balanced Salt infrastructure. If a master fails, minions will notice and select
another master from the available list.

229

Salt Documentation, Release 2015.8.8

18.3 Syndic

Salt's Syndic feature is a way to create differing infrastructure topologies. It is not strictly an HA feature, but can be
treated as such.

With the syndic, a Salt infrastructure can be partitioned in such a way that certain masters control certain segments
of the infrastructure, and **Master of Masters" nodes can control multiple segments underneath them.

Syndics are covered in depth in Salt Syndic.

18.4 Syndic with Multimaster

New in version 2015.5.0.

Syndic with Multimaster lets you connect a syndic to multiple masters to provide an additional layer of redundancy
in a syndic configuration.

Syndics are covered in depth in Salt Syndic.

230 Chapter 18. High Availability Features in Salt

CHAPTER 19

Salt Syndic

The most basic or typical Salt topology consists of a single Master node controlling a group of Minion nodes. An in-
termediate node type, called Syndic, when used offers greater structural flexibility and scalability in the construction
of Salt topologies than topologies constructed only out of Master and Minion node types.

A Syndic node can be thought of as a special passthrough Minion node. A Syndic node consists of a salt-synd-ic
daemon and a salt-master daemon running on the same system. The salt-master daemon running on the
Syndic node controls a group of lower level Minion nodes and the salt-syndic daemon connects higher level
Master node, sometimes called a Master of Masters.

The salt-syndic daemon relays publications and events between the Master node and the local salt-master
daemon. This gives the Master node control over the Minion nodes attached to the salt-master daemon running
on the Syndic node.

19.1 Configuring the Syndic

To setup a Salt Syndic you need to tell the Syndic node and its Master node about each other. If your Master node is
located at 10.10.0. 1, then your configurations would be:

On the Syndic node:

/etc/salt/master
syndic_master: 10.10.0.1 # may be either an IP address or a hostname

Jetc/salt/minion

1d 1s shared by the salt-syndic daemon and a possible salt-minion daemon
on the Syndic node
id: my_syndic

On the Master node:

/etc/salt/master
order_masters: True

The syndic_master option tells the Syndic node where to find the Master node in the same way that the master
option tells a Minion node where to find a Master node.

The 1d option is used by the salt-syndic daemon to identify with the Master node and if unset will default to
the hostname or IP address of the Syndic just as with a Minion.

The order_masters option configures the Master node to send extra information with its publications that is
needed by Syndic nodes connected directly to it.

231

Salt Documentation, Release 2015.8.8

Note: Each Syndic must provide its own f1ile_roots directory. Files will not be automatically transferred from
the Master node.

19.2 Configuring the Syndic with Multimaster

New in version 2015.5.0.

Syndic with Multimaster lets you connect a syndic to multiple masters to provide an additional layer of redundancy
in a syndic configuration.

Higher level masters should first be configured in a multimaster configuration. See Multimaster Tutorial.
On the syndic, the syndic_master option is populated with a list of the higher level masters.

Since each syndic is connected to each master, jobs sent from any master are forwarded to minions that are connected
to each syndic. If the master_id value is set in the master config on the higher level masters, job results are
returned to the master that originated the request in a best effort fashion. Events/jobs without a master_id are
returned to any available master.

19.3 Running the Syndic

The sa'lt-syndic daemon is a separate process that needs to be started in addition to the salt-master daemon
running on the Syndic node. Starting the salt-syndic daemon is the same as starting the other Salt daemons.

The Master node in many ways sees the Syndic as an ordinary Minion node. In particular, the Master will need to
accept the Syndic's Minion key as it would for any other Minion.

On the Syndic node:

salt-syndic
or
service salt-syndic start

On the Master node:

salt-key —-a my_syndic

The Master node will now be able to control the Minion nodes connected to the Syndic. Only the Syndic key will be
listed in the Master node's key registry but this also means that key activity between the Syndic's Minions and the
Syndic does not encumber the Master node. In this way, the Syndic's key on the Master node can be thought of as
a placeholder for the keys of all the Minion and Syndic nodes beneath it, giving the Master node a clear, high level
structural view on the Salt cluster.

On the Master node:

salt-key -L
Accepted Keys:
my_syndic
Denied Keys:
Unaccepted Keys:
Rejected Keys:

salt 'x' test.ping
minion_1:
True

232 Chapter 19. Salt Syndic

Salt Documentation, Release 2015.8.8

minion_2:
True

minion_4:
True

minion_3:
True

19.4 Topology

A Master node (a node which is itself not a Syndic to another higher level Master node) must run a salt-master
daemon and optionally a salt-minion daemon.

A Syndic node must run salt-syndic and salt-master daemons and optionally a salt-minion daemon.
A Minion node must run a salt-minion daemon.

When a salt-master daemon issues a command, it will be received by the Syndic and Minion nodes directly
connected to it. A Minion node will process the command in the way it ordinarily would. On a Syndic node, the
salt-syndic daemon will relay the command to the salt-master daemon running on the Syndic node, which
then propagates the command to to the Minions and Syndics connected to it.

When events and job return data are generated by salt-minion daemons, they are aggregated by the salt-
master daemon they are connected to, which salt-master daemon then relays the data back through its salt-
syndc daemon until the data reaches the Master or Syndic node that issued the command.

19.5 Syndic wait

Note: To reduce the amount of time the CLI waits for Minions to respond, install a Minion on the Syndic or tune
the value of the syndic_wa1t configuration.

While it is possible to run a Syndic without a Minion installed on the same system, it is recommended, for a faster
CLI response time, to do so. Without a Minion installed on the Syndic node, the timeout value of syndic_wait
increases significantly - about three-fold. With a Minion installed on the Syndic, the CLI timeout resides at the value
defined in syndic_wait.

Note: If you have a very large infrastructure or many layers of Syndics, you may find that the CLI doesn't wait long
enough for the Syndics to return their events. If you think this is the case, you can set the syndic_wa1it value in

the Master configs on the Master or Syndic nodes from which commands are executed. The default value is 5, and
should work for the majority of deployments.

In order for a Master or Syndic node to return information from Minions that are below their Syndics, the CLI
requires a short wait time in order to allow the Syndics to gather responses from their Minions. This value is defined
in the syndic_wait config option and has a default of five seconds.

19.6 Syndic config options

These are the options that can be used to configure a Syndic node. Note that other than id, Syndic config options
are placed in the Master config on the Syndic node.

« 1d: Syndic id (shared by the salt-syndic daemon with a potential salt-minion daemon on the same
system)

19.4. Topology 233

Salt Documentation, Release 2015.8.8

« syndic_master: Master node IP address or hostname

« syndic_master_port: Master node ret_port

« syndic_log_f1ile: path to the logfile (absolute or not)
« syndic_pidfile: path to the pidfile (absolute or not)

« syndic_wait: time in seconds to wait on returns from this syndic

234 Chapter 19. Salt Syndic

CHAPTER 20

Salt Proxy Minion

Proxy minions are a developing Salt feature that enables controlling devices that, for whatever reason, cannot run
a standard salt-minion. Examples include network gear that has an API but runs a proprietary OS, devices with
limited CPU or memory, or devices that could run a minion, but for security reasons, will not.

Proxy minions are not an *“out of the box" feature. Because there are an infinite number of controllable devices, you
will most likely have to write the interface yourself. Fortunately, this is only as difficult as the actual interface to
the proxied device. Devices that have an existing Python module (PyUSB for example) would be relatively simple
to interface. Code to control a device that has an HTML REST-based interface should be easy. Code to control your
typical housecat would be excellent source material for a PhD thesis.

Salt proxy-minions provide the ‘plumbing’ that allows device enumeration and discovery, control, status, remote
execution, and state management.

See the Proxy Minion Walkthrough for an end-to-end demonstration of a working proxy minion.

See the Proxy Minion SSH Walkthrough for an end-to-end demonstration of a working SSH proxy minion.

20.1 New in 2015.8.2

BREAKING CHANGE: Adding the proxymodule variable to __opts__ is deprecated. The proxymodule vari-
able has been moved a new globally-injected variable called _ proxy . A related configuration option called
add_proxymodule_to_opts has been added and defaults to True. In the next major release, codenamed Boron, this
variable will default to False.

In the meantime, proxies that functioned under 2015.8.0 and .1 should continue to work under 2015.8.2. You should
rework your proxy code to use __proxy _ as soon as possible.

The rest_sample example proxy minion has been updated to use __proxy__.

This change was made because proxymodules are a LazyLoader object, but LazyLoaders cannot be serialized.
__opts__ gets serialized, and so things like saltutil.sync_all and state.highstate would throw exceptions.

Also in this release, proxymodules can be stored on the master in /srv/salt/_proxy. A new saltutil function called
sync_proxies will transfer these to remote proxy minions. Note that you must restart the salt-proxy daemon to pick
up these changes.

In addition, a salt.utils helper function called is_proxy() was added to make it easier to tell when the running minion
is a proxy minion.

235

Salt Documentation, Release 2015.8.8

20.2 New in 2015.8

Starting with the 2015.8 release of Salt, proxy processes are no longer forked off from a controlling minion. Instead,
they have their own script salt-proxy which takes mostly the same arguments that the standard Salt minion
does with the addition of ——proxyid. This is the id that the salt-proxy will use to identify itself to the master.
Proxy configurations are still best kept in Pillar and their format has not changed.

This change allows for better process control and logging. Proxy processes can now be listed with standard process
management utilities (ps from the command line). Also, a full Salt minion is no longer required (though it is still

strongly recommended) on machines hosting proxies.

20.3 Getting Started

The following diagram may be helpful in understanding the structure of a Salt installation that includes proxy-

minions:
minioncontroller

salt-proxy
process

process

/ salt-pro
/4 xy

salt-proxy
process

dumbdevicel
(netwaork switch)

dumbdevice2
(network switch)

dumbdevice3
(network switch)

minioncontroller2

/ salt-minion
' process

|| ‘ salt-master)
salt-proxy
<] OI

//_,-—4' process

— 8 @

| dumbdevice4 (i2c_lightshow) |

-—p-szsz@

[dumbdevices (i2c_lightshow) |

L

salt-proxy
process

salt-proxy

-" dumbdewceﬁ
(433 MHz wireless)

\’_ process

minioncontroller3

I\ salt-rinion
process

salt-proxy
process

¥

f-—l-m

dumbdewoe?
{sms serial)

@

236

Chapter 20. Salt Proxy Minion

Salt Documentation, Release 2015.8.8

The key thing to remember is the left-most section of the diagram. Salt's nature is to have a minion connect to a
master, then the master may control the minion. However, for proxy minions, the target device cannot run a minion.

After the proxy minion is started and initiates its connection to the *dumb’ device, it connects back to the salt-master
and for all intents and purposes looks like just another minion to the Salt master.

To create support for a proxied device one needs to create four things:
1. The proxy_connection_module (located in salt/proxy).
2. The grains support code (located in salt/grains).
3. Salt modules specific to the controlled device.

4. Salt states specific to the controlled device.

20.3.1 Configuration parameters

Proxy minions require no configuration parameters in /etc/salt/master.

Salt's Pillar system is ideally suited for configuring proxy-minions. Proxies can either be designated via a pillar file in
pillar_roots, or through an external pillar. External pillars afford the opportunity for interfacing with a configuration
management system, database, or other knowledgeable system that that may already contain all the details of proxy
targets. To use static files in pillar_roots, pattern your files after the following examples, which are based on the
diagram above:

/srv/pillar/top.sls

base:

dumbdevicel:

- dumbdevicel
dumbdevice2:

- dumbdevice2
dumbdevice3:

- dumbdevice3
dumbdevice4:

- dumbdevice4
dumbdev-ice5:

- dumbdevice5
dumbdevice6:

- dumbdevice6
dumbdevice7:

- dumbdevice7

/srv/pillar/dumbdevicel.sls

proxy:
proxytype: networkswitch
host: 172.23.23.5
username: root
passwd: letmein

/srv/pillar/dumbdevice2.sls

proxy:
proxytype: networkswitch
host: 172.23.23.6
username: root
passwd: letmein

/srv/pillar/dumbdevice3.sls

20.3. Getting Started 237

Salt Documentation, Release 2015.8.8

proxy:
proxytype: networkswitch
host: 172.23.23.7
username: root
passwd: letmein

/srv/pillar/dumbdevice4.sls

proxy:
proxytype: i2c_lightshow
i2c_address: 1

/srv/pillar/dumbdevice5.sls

proxy:
proxytype: i2c_lightshow
i2c_address: 2

/srv/pillar/dumbdevice6.sls

proxy:
proxytype: 433mhz_wireless

/srv/pillar/dumbdevice7.sls

proxy:
proxytype: sms_serial
deventry: /dev/tty04

Note the contents of each minioncontroller key may differ widely based on the type of device that the proxy-minion
is managing.

In the above example

« dumbdevices 1, 2, and 3 are network switches that have a management interface available at a particular IP
address.

« dumbdevices 4 and 5 are very low-level devices controlled over an i2c bus. In this case the devices are physically
connected to machine “minioncontroller2’, and are addressable on the i2c bus at their respective i2c addresses.

« dumbdevice6 is a 433 MHz wireless transmitter, also physically connected to minioncontroller2
« dumbdevice7 is an SMS gateway connected to machine minioncontroller3 via a serial port.

Because of the way pillar works, each of the salt-proxy processes that fork off the proxy minions will only see the
keys specific to the proxies it will be handling.

Also, in general, proxy-minions are lightweight, so the machines that run them could conceivably control a large
number of devices. To run more than one proxy from a single machine, simply start an additional proxy process
with ——proxyid set to the id to which you want the proxy to bind. It is possible for the proxy services to be spread
across many machines if necessary, or intentionally run on machines that need to control devices because of some
physical interface (e.g. i2c and serial above). Another reason to divide proxy services might be security. In more
secure environments only certain machines may have a network path to certain devices.

20.3.2 Proxymodules

A proxy module encapsulates all the code necessary to interface with a device. Proxymodules are located inside the
salt.proxy module. At a minimum a proxymodule object must implement the following functions:

238 Chapter 20. Salt Proxy Minion

Salt Documentation, Release 2015.8.8

__virtual__(): This function performs the same duty that it does for other types of Salt modules. Logic goes
here to determine if the module can be loaded, checking for the presence of Python modules on which the proxy
depends. Returning False will prevent the module from loading.

init(opts): Perform any initialization that the device needs. This is a good place to bring up a persistent con-
nection to a device, or authenticate to create a persistent authorization token.

shutdown (): Code to cleanly shut down or close a connection to a controlled device goes here. This function must
exist, but can contain only the keyword pass if there is no shutdown logic required.

ping(): While not required, it is highly recommended that this function also be defined in the proxymodule. The
code for ping should contact the controlled device and make sure it is really available.

Pre 2015.8 the proxymodule also must have an id () function. 2015.8 and following don't use this function because
the proxy's id is required on the command line.

id (opts): Returns a unique, unchanging id for the controlled device. This is the ' ‘name" of the device, and is used
by the salt-master for targeting and key authentication.

Here is an example proxymodule used to interface to a very simple REST server. Code for the server is in the salt-
contrib GitHub repository

This proxymodule enables *“service" enumeration, starting, stopping, restarting, and status; " package" installation,
and a ping.

—-*— coding: utf-8 —x-

This is a simple proxy-minion designed to connect to and communicate with
the bottle-based web service contained in
https://github.com/saltstack/salt-contrib/proxyminion_rest_example

rrr

from __future__ import absolute_import

Import python libs
import logging
import salt.utils.http

HAS_REST_EXAMPLE = True

This must be present or the Salt loader won't load this module
__proxyenabled__ = ['rest_sample']

Variables are scoped to this module so we can have persistent data
across calls to fns in here.

GRAINS_CACHE = {}

DETAILS = {}

Want logging!
log = logging.getLogger(__file__)

This does nothing, it's here just as an example and to provide a log
entry when the module is loaded.
def __virtual__():

rr

Only return if all the modules are available

log.debug('rest_sample proxy __virtual__() called...")
return True

20.3. Getting Started 239

https://github.com/saltstack/salt-contrib/proxyminion_rest_example
https://github.com/saltstack/salt-contrib/proxyminion_rest_example

Salt Documentation, Release 2015.8.8

Every proxy module needs an 'init', though you can
just put a 'pass' here if it doesn't need to do anything.

def

init(opts):
log.debug('rest_sample proxy init() called...")

Save the REST URL
DETAILS['url'] = opts['proxy']J['url']

Make sure the REST URL ends with a '/'
if not DETAILS['url'].endswith('/'):
DETAILS['url'] += '/'

def +id(opts):
Return a unique ID for this proxy minion. This ID MUST NOT CHANGE.
If it changes while the proxy is running the salt-master will get
really confused and may stop talking to this minion
r = salt.utils.http.query(opts['proxy']['url']+'id"', decode_type='json', decode=Trusg
return r['dict']['id'].encode('ascii', 'ignore')
def grains():
Get the grains from the proxied device
if not GRAINS_CACHE:
r = salt.utils.http.query(DETAILS['url']J+"info', decode_type='json', decode=Trug)
GRAINS_CACHE = r['dict']
return GRAINS_CACHE
def grains_refresh():
Refresh the grains from the proxied device
GRAINS_CACHE = {}
return grains()
def service_start(name):
Start a "service'" on the REST server
r = salt.utils.http.query(DETAILS['url']+'service/start/'+name, decode_type='json',
return r['dict']
def service_stop(name):
Stop a '"service" on the REST server
r = salt.utils.http.query(DETAILS['url']+'service/stop/'+name, decode_type='json', d
return r['dict']
def service_restart(name):
240 Chapter 20. Salt Proxy Minion

)

decode=True)

ecode=True)

Salt Documentation, Release 2015.8.8

def

def

def

def

def

def

rr

Restart a "service" on the REST server

rr

r = salt.utils.http.query(DETAILS['url']+'service/restart/'+name, decode_type='7json
return r['dict']

service_Tlist():

rr

List "services'" on the REST server

rr

r = salt.utils.http.query(DETAILS['url']+'service/list', decode_type='json', decodej
return r['dict']

service_status(name):
rr

Check if a service is running on the REST server

rr

r = salt.utils.http.query(DETAILS['url']+'service/status/'+name, decode_type='json'
return r['dict']

package_list():

rr

List "packages'" installed on the REST server
r = salt.utils.http.query(DETAILS['url']+'package/list', decode_type='json', decode]
return r['dict']

package_install(name, **kwargs):

rr

Install a "package" on the REST server
cmd = DETAILS['url']+'package/install/'+name
if 'version' 1in kwargs:
cmd += '"/'+kwargs['version']
else:
cmd += '/1.0'
r = salt.utils.http.query(cmd, decode_type='json', decode=True)

package_remove(name) :

rr

Remove a "package" on the REST server

rr

r = salt.utils.http.query(DETAILS['url']+'package/remove/'+name, decode_type='json'
return r['dict']

package_status(name):

rr

Check the installation status of a package on the REST server

rr

r = salt.utils.http.query(DETAILS['url']+'package/status/'+name, decode_type='json'
return r['dict']

20.3. Getting Started 241

, decode=Truc

True)

decode=True

True)

decode=True

decode=True

Salt Documentation, Release 2015.8.8

def ping():

rr

Is the REST server up?
r = salt.utils.http.query(DETAILS['url']+'ping', decode_type='json', decode=True)
try:
return r['dict'].get('ret', False)
except Exception:
return False

def shutdown(opts):

rr

For this proxy shutdown is a no-op

rr

log.debug('rest_sample proxy shutdown() called...")
pass

Grains are data about minions. Most proxied devices will have a paltry amount of data as compared to a typical
Linux server. By default, a proxy minion will have several grains taken from the host. Salt core code requires values
for kernel, os, and os_family--all of these are forced to be proxy for proxy-minions. To add others to your
proxy minion for a particular device, create a file in salt/grains named [proxytype].py and place inside it the different
functions that need to be run to collect the data you are interested in. Here's an example:

20.4 The __proxyenabled__ directive

Salt execution modules, by, and large, cannot *"automatically" work with proxied devices. Execution modules like
pkg or sqlite3 have no meaning on a network switch or a housecat. For an execution module to be available to a
proxy-minion, the __proxyenabled__ variable must be defined in the module as an array containing the names
of all the proxytypes that this module can support. The array can contain the special value * to indicate that the
module supports all proxies.

If no __proxyenabled__ variable is defined, then by default, the execution module is unavailable to any proxy.

Here is an excerpt from a module that was modified to support proxy-minions:

__proxyenabled__ = ['x']
[...]
def ping():

if not salt.utils.is_proxy():
return True
else:
ping_cmd = __opts__['proxy']['proxytype'] + '.ping
if __opts__.get('add_proxymodule_to_opts', False):
return __opts__['proxymodule'][ping_cmd] ()
else:
return __proxy__[ping_cmd] ()

And then in salt.proxy.rest_sample.py we find

def ping():

rr

Is the REST server up?

242 Chapter 20. Salt Proxy Minion

Salt Documentation, Release 2015.8.8

rr

r = salt.utils.http.query(DETAILS['url']+'ping', decode_type='json', decode=True)
try:

return r['dict'].get('ret', False)
except Exception:

return False

20.4.1 Salt Proxy Minion End-to-End Example

The following is walkthrough that documents how to run a sample REST service and configure one or more proxy
minions to talk to and control it.

1

3.

. Ideally, create a Python virtualenv in which to run the REST service. This is not strictly required, but without
a virtualenv you will need to install bottle via pip globally on your system

. Clone https://github.com/saltstack/salt-contrib and copy the contents of the directory proxymin-
ion_rest_example somewhere on a machine that is reachable from the machine on which you want
to run the salt-proxy. This machine needs Python 2.7 or later.

Install bottle version 0.12.8 via pip or easy_install

pip

install bottle==0.12.8

. Run python rest.py --help for usage
. Start the REST API on an appropriate port and IP.

. Load the REST service's status page in your browser by going to the IP/port combination (e.g.
http://127.0.0.1:8000)

. You should see a page entitled " Salt Proxy Minion" with two sections, one for " “services" and one for " “pack-
ages" and you should see a log entry in the terminal where you started the REST process indicating that the
index page was retrieved.

SaltStack Proxy Minion

Services apache running
postgresal stopped
redbull running

Packages coreutils 1.06

Now, configure your salt-proxy.

1. Edit /etc/salt/proxy and add an entry for your master's location

‘mas

ter: localhost

2. On your salt-master, ensure that pillar is configured properly. Select an ID for your proxy (in this example we

will name the proxy with the letter "p' followed by the port the proxy is answering on). In your pillar topfile,
place an entry for your proxy:

20.4. The __proxyenabled__ directive 243

https://github.com/saltstack/salt-contrib
http://127.0.0.1:8000

Salt Documentation, Release 2015.8.8

base:
'p80OO " :
- p800O

This says that Salt's pillar should load some values for the proxy p8000 from the file /srv/pillar/p8000.sls (if you
have not changed your default pillar_roots)

3. In the pillar root for your base environment, create this file:

p8000.sls

proxy:
proxytype: rest_sample
url: http://<IP your REST listens on>:port

In other words, if your REST service is listening on port 8000 on 127.0.0.1 the “url' key above should say url:
http://127.0.0.1:8000

4. Make sure your salt-master is running.

5. Start the salt-proxy in debug mode

‘salt—proxy --proxyid=p8000 -1 debug

6. Accept your proxy's key on your salt-master

salt-key -y -a p8000

The following keys are going to be accepted:
Unaccepted Keys:

p800O

Key for minion p8000 accepted.

7. Now you should be able to ping your proxy. When you ping, you should see a log entry in the terminal where
the REST service is running.

salt p8000 test.ping

8. The REST service implements a degenerately simple pkg and service provider as well as a small set of grains.
To “install" a package, use a standard pkg.install. If you pass '==' and a verrsion number after the
package name then the service will parse that and accept that as the package's version.

9. Try running salt p8000 grains.items to see what grains are available. You can target proxies via
grains if you like.

10. You can also start and stop the available services (apache, redbull, and postgresql with service.start, etc.

11. States can be written to target the proxy. Feel free to experiment with them.

20.5 SSH Proxymodules

See above for a general introduction to writing proxy modules. All of the guidelines that apply to REST are the same
for SSH. This sections specifically talks about the SSH proxy module and explains the working of the example proxy
module ssh_sample.

Here is a simple example proxymodule used to interface to a device over SSH. Code for the SSH shell is in the
salt-contrib GitHub repository

This proxymodule enables " “package" installation.

244 Chapter 20. Salt Proxy Minion

https://github.com/saltstack/salt-contrib/proxyminion_ssh_example

Salt Documentation, Release 2015.8.8

—x- coding: utf-8 —*-

rr

This is a simple proxy-minion designed to connect to and communicate with
a server that exposes functionality via SSH.

This can be used as an option when the device does not provide

an apil over HTTP and doesn't have the python stack to run a minion.

rrr

from __future_

_ 1dmport absolute_import
Import python libs

import json

import logging

Import Salt's libs
from salt.utils.vt_helper import SSHConnection
from salt.utils.vt import TerminalException

This must be present or the Salt loader won't load this module
__proxyenabled__ = ['ssh_sample']

DETAILS = {}

Want logging!
log = logging.getlLogger(__file__)

This does nothing, it's here just as an example and to provide a log
entry when the module is loaded.
def virtual__():

rr

Only return if all the modules are available

rr

log.info('ssh_sample proxy __virtual__() called...")

return True

def 1init(opts):
Required.
Can be used to initialize the server connection.
try:

DETAILS['server'] = SSHConnection(host=__opts__['proxy']['host'],
username=__opts__['proxy']['username'],
password=__opts__['proxy']['password'])

connected to the SSH server

out, err = DETAILS['server'].sendline('help')

except TerminalException as e:
log.error(e)
return False

def shutdown(opts):

rr

Disconnect

rr

20.5. SSH Proxymodules

245

Salt Documentation, Release 2015.8.8

DETAILS['server'].close_connection()

def parse(out):

rr

Extract json from out.

Parameter
out: Type string. The data returned by the
ssh command.
jsonret = []
in_json = False
for 1n_ in out.split('\n'):
if '{' dn 1n_:
in_json = True
if in_json:
jsonret.append(ln_)
if '} odn 1n_:
in_json = False
return json.loads('\n'.join(jsonret))

def package_list():
rr
List "packages'" by executing a command via ssh
This function is called in response to the salt command

..code-block: :bash
salt target_minion pkg.list_pkgs

rr

Send the command to execute
out, err = DETAILS['server'].sendline('pkg_list')

"scrape" the output and return the right fields as a dict
return parse(out)

def package_install(name, **kwargs):

rr

Install a "package" on the REST server
rr
cmd = 'pkg_install ' + name
if 'version' 1in kwargs:
cmd += '"/'+kwargs['version']
else:
cmd += '/1.0'

Send the command to execute
out, err = DETAILS['server'].sendline(cmd)

"scrape' the output and return the right fields as a dict

return parse(out)

def package_remove(name):

rr

246 Chapter 20. Salt Proxy Minion

Salt Documentation, Release 2015.8.8

Remove a '"package'" on the REST server

rr

cmd = 'pkg_remove ' + name

Send the command to execute
out, err = DETAILS['server'].sendline(cmd)

"scrape' the output and return the right fields as a dict
return parse(out)

20.5.1 Connection Setup

The init() method is responsible for connection setup. It uses the host, username and password config
variables defined in the pillar data. The prompt kwarg can be passed to SSHConnection if your SSH server's
prompt differs from the example's prompt (Cmd). Instantiating the SSHConnection class establishes an SSH
connection to the ssh server (using Salt VT).

20.5.2 Command execution

The package_* methods use the SSH connection (established in init ()) to send commands out to the SSH server.
The sendline () method of SSHConnection class can be used to send commands out to the server. In the above
example we send commands like pkg_Tlist or pkg_install. You can send any SSH command via this utility.

20.5.3 Output parsing

Output returned by sendline () is a tuple of strings representing the stdout and the stderr respectively. In the toy
example shown we simply scrape the output and convert it to a python dictionary, as shown in the parse method.
You can tailor this method to match your parsing logic.

20.5.4 Connection teardown
The shutdown method is responsible for calling the close_connection () method of SSHConnection class.
This ends the SSH connection to the server.

For more information please refer to class SSHConnection.

Salt Proxy Minion SSH End-to-End Example
The following is walkthrough that documents how to run a sample SSH service and configure one or more proxy
minions to talk to and control it.

1. This walkthrough uses a custom SSH shell to provide an end to end example. Any other shells can be used
too.

2. Setup the proxy command shell as shown https://github.com/saltstack/salt-
contrib/tree/master/proxyminion_ssh_example

Now, configure your salt-proxy.

1. Edit /etc/salt/proxy and add an entry for your master's location

20.5. SSH Proxymodules 247

https://github.com/saltstack/salt/blob/b8271c7512da7e048019ee26422be9e7d6b795ab/salt/utils/vt_helper.py#L28
https://github.com/saltstack/salt-contrib/tree/master/proxyminion_ssh_example
https://github.com/saltstack/salt-contrib/tree/master/proxyminion_ssh_example

Salt Documentation, Release 2015.8.8

master: localhost
add_proxymodule_to_opts: False
multiprocessing: False

2. On your salt-master, ensure that pillar is configured properly. Select an ID for your proxy (in this example we
will name the proxy with the letter "p' followed by the port the proxy is answering on). In your pillar topfile,
place an entry for your proxy:

base:
'p8OOO " :
- p80006

This says that Salt's pillar should load some values for the proxy p8000 from the file /srv/pillar/p8000.sls (if you
have not changed your default pillar_roots)

3. In the pillar root for your base environment, create this file:

p8000.sls

proxy:
proxytype: ssh_sample
host: saltyVM
username: salt
password: badpass

4. Make sure your salt-master is running.

5. Start the salt-proxy in debug mode

salt-proxy --proxyid=p8000 -1 debug

6. Accept your proxy's key on your salt-master

salt-key -y -a p8000

The following keys are going to be accepted:
Unaccepted Keys:

p800O

Key for minion p8000 accepted.

7. Now you should be able to run commands on your proxy.

salt p8000 pkg.list_pkgs

8. The SSH shell implements a degenerately simple pkg. To “install" a package, use a standard pkg.install.
If you pass "=="and a verrsion number after the package name then the service will parse that and accept that
as the package's version.

248 Chapter 20. Salt Proxy Minion

CHAPTER 21

Salt Package Manager

The Salt Package Manager, or SPM, allows Salt formulas to be packaged, for ease of deployment. The design of SPM
was influenced by other existing packaging systems including RPM, Yum, and Pacman.

21.1 Building Packages

Before SPM can install packages, they must be built. The source for these packages is often a Git repository, such as
those found at the saltstack-formulas organization on GitHub.

21.1.1 FORMULA

In addition to the formula itself, a FORMULA file must exist which describes the package. An example of this file is:

name: apache

os: RedHat, Debian, Ubuntu, Suse, FreeBSD
os_family: RedHat, Debian, Suse, FreeBSD
version: 201506

release: 2

summary: Formula for 1installing Apache
description: Formula for installing Apache

Required Fields
This file must contain at least the following fields:
name

The name of the package, as it will appear in the package filename, in the repository metadata, and the package
database. Even if the source formula has -formula in its name, this name should probably not include that. For
instance, when packaging the apache-formula, the name should be set to apache.

os

The value of the os grain that this formula supports. This is used to help users know which operating systems can
support this package.

249

Salt Documentation, Release 2015.8.8

os_family

The value of the os_family grain that this formula supports. This is used to help users know which operating
system families can support this package.

version

The version of the package. While it is up to the organization that manages this package, it is suggested that this
version is specified in a YYYYMM format. For instance, if this version was released in June 2015, the package version
should be 201506. If multiple released are made in a month, the releasee field should be used.

minimum_version

Minimum recommended version of Salt to use this formula. Not currently enforced.

release

This field refers primarily to a release of a version, but also to multiple versions within a month. In general, if a
version has been made public, and immediate updates need to be made to it, this field should also be updated.

summary

A one-line description of the package.

description

A more detailed description of the package which can contain more than one line.

Optional Fields

The following fields may also be present.

top_level_dir

This field is optional, but highly recommended. If it is not specified, the package name will be used.

Formula repositories typically do not store .sls files in the root of the repository; instead they are stored in a
subdirectory. For instance, an apache-formula repository would contain a directory called apache, which
would contain an init.sls, plus a number of other related files. In this instance, the top_level_d1ir should
be set to apache.

Files outside the top_level_dir, such as README. rst, FORMULA, and LICENSE will not be installed. The
exceptions to this rule are files that are already treated specially, such as pillar.example and _modules/.

recommended

A list of optional packages that are recommended to be installed with the package. This list is displayed in an
informational message when the package is installed to SPM.

250 Chapter 21. Salt Package Manager

Salt Documentation, Release 2015.8.8

21.1.2 Building a Package

Once a FORMULA file has been created, it is placed into the root of the formula that is to be turned into a package.
The spm build command is used to turn that formula into a package:

spm build /path/to/saltstack-formulas/apache-formula

The resulting file will be placed in the build directory. By default this directory is located at /srv/spm/.

21.2 Building Repositories

Once one or more packages have been built, they can be made available to SPM via a package repository. Place the
packages into the directory to be served and issue an spm create_repo command:

spm create_repo /srv/spm

This command is used, even if repository metadata already exists in that directory. SPM will regenerate the repository
metadata again, using all of the packages in that directory.

21.3 Configuring Remote Repositories

Before SPM can use a repository, two things need to happen. First, SPM needs to know where the repositories are.
Then it needs to pull down the repository metadata.

21.3.1 Repository Configuration Files

Normally repository configuration files are placed in the /etc/salt/spm.repos.d. These files contain the
name of the repository, and the link to that repository:

my_repo:
url: https://spm.example.com/

The URL can use http, https, ftp, or file.

local_repo:
url: file:///srv/spm

21.3.2 Updating Local Repository Metadata

Once the repository is configured, its metadata needs to be downloaded. At the moment, this is a manual process,
using the spm update_repo command.

’ spm update_repo

21.4 Installing Packages

Packages may be installed either from a local file, or from an SPM repository. To install from a repository, use the
spm install command:

21.2. Building Repositories 251

Salt Documentation, Release 2015.8.8

’spm install apache

To install from a local file, use the spm local install command:

’spm local dnstall /srv/spm/apache-201506-1.spm

Currently, SPM does not check to see if files are already in place before installing them. That means that existing
files will be overwritten without warning.

21.5 Pillars

Formula packages include a pillar.example file. Rather than being placed in the formula directory, this file is renamed
to <formula name>.sls.orig and placed in the pillar_path, where it can be easily updated to meet the
user's needs.

21.6 Loader Modules

When an execution module is placed in <file_roots>/_modules/ on the master, it will automatically be
synced to minions, the next time a sync operation takes place. Other modules are also propagated this way: state
modules can be placed in _states/, and so on.

When SPM detects a file in a package which resides in one of these directories, that directory will be placed in
<file_roots> instead of in the formula directory with the rest of the files.

21.7 Removing Packages

Packages may be removed once they are installed using the spm remove command.

’spm remove apache

If files have been modified, they will not be removed. Empty directories will also be removed.

21.8 Technical Information

Packages are built using BZ2-compressed tarballs. By default, the package database is stored using the sqlite3
driver (see Loader Modules below).

Support for these are built into Python, and so no external dependencies are needed.

All other files belonging to SPM use YAML, for portability and ease of use and maintainability.

21.9 SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files to the filesystem and store package
metadata in a local database. However, because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

252 Chapter 21. Salt Package Manager

Salt Documentation, Release 2015.8.8

21.9.1 Package Database

By default, the package database is stored using the sql1ite3 module. This module was chosen because support
for SQLite3 is built into Python itself.

Please see the SPM Development Guide for information on creating new modules for package database management.

21.9.2 Package Files

By default, package files are installed using the Local module. This module applies files to the local filesystem, on
the machine that the package is installed on.

Please see the SPM Development Guide for information on creating new modules for package file management.

21.10 SPM Configuration

There are a number of options that are specific to SPM. They may be configured in the master configuration file,
or in SPM's own spm configuration file (normally located at /etc/salt/spm). If configured in both places, the
spm file takes precedence. In general, these values will not need to be changed from the defaults.

21.10.1 spm_logfile

Default: /var/log/salt/spm
Where SPM logs messages.

21.10.2 spm_repos_config

Default: /etc/salt/spm.repos

SPM repositories are configured with this file. There is also a directory which corresponds to it, which ends in . d.
For instance, if the filename is /etc/salt/spm. repos, the directory will be /etc/salt/spm.repos.d/.

21.10.3 spm_cache_dir

Default: /var/cache/salt/spm

When SPM updates package repository metadata and downloads packaged, they will be placed in this directory. The
package database, normally called packages . db, also lives in this directory.

21.10.4 spm_db

Default: /var/cache/salt/spm/packages.db

The location and name of the package database. This database stores the names of all of the SPM packages installed
on the system, the files that belong to them, and the metadata for those files.

21.10. SPM Configuration 253

Salt Documentation, Release 2015.8.8

21.10.5 spm_build_dir

Default: /srv/spm

When packages are built, they will be placed in this directory.

21.10.6 spm_build_exclude

Default: ['.git']

When SPM builds a package, it normally adds all files in the formula directory to the package. Files listed here will
be excluded from that package. This option requires a list to be specified.

spm_build_exclude:
- .git
- .svn

21.11 Types of Packages

SPM supports different types of formula packages. The function of each package is denoted by its name. For instance,
packages which end in —formu'la are considered to be Salt States (the most common type of formula). Packages
which end in —conf contain configuration which is to be placed in the /etc/salt/ directory. Packages which
do not contain one of these names are treated as if they have a —formula name.

21.11.1 formula

By default, most files from this type of package live in the /srv/spm/salt/ directory. The exception is the
pillar.example file, which will be renamed to <package_name>.sls and placed in the pillar directory
(/srv/spm/pillar/ by default).

21.11.2 reactor

By default, files from this type of package live in the /srv/spm/reactor/ directory.

21.11.3 conf
The files in this type of package are configuration files for Salt, which normally live in the /etc/sa'lt/ directory.

Configuration files for packages other than Salt can and should be handled with a Salt State (using a formula type
of package).

SPM Developmnent Guide

This document discusses developing additional code for SPM.

254 Chapter 21. Salt Package Manager

Salt Documentation, Release 2015.8.8

SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files to the filesystem and store package
metadata in a local database. However, because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Each function that accepts arguments has a set of required and optional arguments. Take note that SPM will pass
all arguments in, and therefore each function must accept each of those arguments. However, arguments that are
marked as required are crucial to SPM's core functionality, while arguments that are marked as optional are provided
as a benefit to the module, if it needs to use them.

Package Database By default, the package database is stored using the sql1ite3 module. This module was chosen
because support for SQLite3 is built into Python itself.

Modules for managing the package database are stored in the salt/spm/pkgdb/ directory. A number of functions
must exist to support database management.

init() Get a database connection, and initialize the package database if necessary.

This function accepts no arguments. If a database is used which supports a connection object, then that connection
object is returned. For instance, the sql1te3 module returns a connect () object from the sqlite3 library:

conn = sqlite3.connect(__opts__['spm_db'], disolation_level=None)

return conn

SPM itself will not use this connection object; it will be passed in as-is to the other functions in the module. Therefore,
when you set up this object, make sure to do so in a way that is easily usable throughout the module.

info() Return information for a package. This generally consists of the information that is stored in the FORMULA
file in the package.

The arguments that are passed in, in order, are package (required) and conn (optional).

package is the name of the package, as specified in the FORMULA. conn is the connection object returned from
init().

list_files() Return a list of files for an installed package. Only the filename should be returned, and no other
information.

The arguments that are passed in, in order, are package (required) and conn (optional).

package is the name of the package, as specified in the FORMULA. conn is the connection object returned from
init().

register_pkg() Register a package in the package database. Nothing is expected to be returned from this function.
The arguments that are passed in, in order, are name (required), formula_def (required), and conn (optional).

name is the name of the package, as specified in the FORMULA. formula_def is the contents of the FORMULA
file, as a dict. conn is the connection object returned from init ().

21.11. Types of Packages 255

Salt Documentation, Release 2015.8.8

register_file() Register a file in the package database. Nothing is expected to be returned from this function.

The arguments that are passed in are name (required), member (required), path (required), digest (optional),
and conn (optional).

name is the name of the package.

member is a tarfile object for the package file. It is included, because it contains most of the information for the
file.

path is the location of the file on the local filesystem.
digest is the SHA1 checksum of the file.

conn is the connection object returned from init ().

unregister_pkg() Unregister a package from the package database. This usually only involves removing the pack-
age's record from the database. Nothing is expected to be returned from this function.

The arguments that are passed in, in order, are name (required) and conn (optional).

name is the name of the package, as specified in the FORMULA. conn is the connection object returned from
init().

unregister_file() Unregister a package from the package database. This usually only involves removing the pack-
age's record from the database. Nothing is expected to be returned from this function.

The arguments that are passed in, in order, are name (required), pkg (optional) and conn (optional).
name is the path of the file, as it was installed on the filesystem.
pkg is the name of the package that the file belongs to.

conn is the connection object returned from init ().

db_exists() Check to see whether the package database already exists. This is the path to the package database file.
This function will return True or False.

The only argument that is expected is db_, which is the package database file.

Package Files By default, package files are installed using the Local module. This module applies files to the local
filesystem, on the machine that the package is installed on.

Modules for managing the package database are stored in the salt/spm/pkgfiles/ directory. A number of
functions must exist to support file management.

init() Initialize the installation location for the package files. Normally these will be directory paths, but other
external destinations such as databases can be used. For this reason, this function will return a connection object,
which can be a database object. However, in the default Local module, this object is a dict containing the paths.
This object will be passed into all other functions.

Three directories are used for the destinations: formula_path, pillar_path, and reactor_path.

formula_path is the location of most of the files that will be installed. The default is specific to the operating
system, but is normally /srv/salt/.

pillar_path is the location that the pillar.example file will be installed to. The default is specific to the
operating system, but is normally /srv/pillar/.

256 Chapter 21. Salt Package Manager

Salt Documentation, Release 2015.8.8

reactor_path is the location that reactor files will be installed to. The default is specific to the operating system,
but is normally /srv/reactor/.

check_existing() Check the filesystem for existing files. All files for the package will be checked, and if any are
existing, then this function will normally state that SPM will refuse to install the package.

This function returns a list of the files that exist on the system.

The arguments that are passed into this function are, in order: package (required), pkg_f1iles (required), for-
mula_def (formula_def), and conn (optional).

package is the name of the package that is to be installed.
pkg_f1iles is a list of the files to be checked.
formula_def is a copy of the information that is stored in the FORMULA file.

conn is the file connection object.

install_file() Install a single file to the destination (normally on the filesystem). Nothing is expected to be returned
from this function.

This function returns the final location that the file was installed to.

The arguments that are passed into this function are, in order, package (required), formula_tar (required),
member (required), formula_def (required), and conn (optional).

package is the name of the package that is to be installed.

formula_tar is the tarfile object for the package. This is passed in so that the function can call for-
mula_tar.extract () for the file.

member is the tarfile object which represents the individual file. This may be modified as necessary, before being
passed into formula_tar.extract().

formula_def is a copy of the information from the FORMULA file.

conn is the file connection object.

remove_file() Remove a single file from file system. Normally this will be little more than an os.remove().
Nothing is expected to be returned from this function.

The arguments that are passed into this function are, in order, path (required) and conn (optional).
path is the absolute path to the file to be removed.

conn is the file connection object.

hash_file() Returns the hexdigest hash value of a file.

The arguments that are passed into this function are, in order, path (required), hashobj (required), and conn
(optional).

path is the absolute path to the file.
hashobj is a reference to hashlib.shal (), which is used to pull the hexdigest () for the file.
conn is the file connection object.

This function will not generally be more complex than:

21.11. Types of Packages 257

Salt Documentation, Release 2015.8.8

def hash_file(path, hashobj, conn=None):
with salt.utils.fopen(path, 'r') as f:
hashobj.update(f.read())
return hashobj.hexdigest()

path_exists() Check to see whether the file already exists on the filesystem. Returns True or False.

This function expects a path argument, which is the absolute path to the file to be checked.

path_isdir() Check to see whether the path specified is a directory. Returns True or False.

This function expects a path argument, which is the absolute path to be checked.

258

Chapter 21. Salt Package Manager

CHAPTER 22

Salt Transport

One of fundamental features of Salt is remote execution. Salt has two basic " “channels" for communicating with
minions. Each channel requires a client (minion) and a server (master) implementation to work within Salt. These
pairs of channels will work together to implement the specific message passing required by the channel interface.

22.1 Pub Channel

The pub channel, or publish channel, is how a master sends a job (payload) to a minion. This is a basic pub/sub
paradigm, which has specific targeting semantics. All data which goes across the publish system should be encrypted
such that only members of the Salt cluster can decrypt the publishes.

22.2 Req Channel

The req channel is how the minions send data to the master. This interface is primarily used for fetching files and
returning job returns. The req channels have two basic interfaces when talking to the master. send is the basic
method that guarantees the message is encrypted at least so that only minions attached to the same master can read
it-- but no guarantee of minion-master confidentiality, wheras the crypted_transfer_decode_dictentry
method does guarantee minion-master confidentiality.

22.2.1 Zeromq Transport

Note: Zeromgq is the current default transport within Salt

Zeromq is a messaging library with bindings into many languages. Zeromq implements a socket interface for mes-
sage passing, with specific semantics for the socket type.

Pub Channel

The pub channel is implemented using zeromq's pub/sub sockets. By default we don't use zeromgq's filtering, which
means that all publish jobs are sent to all minions and filtered minion side. Zeromq does have publisher side filtering
which can be enabled in salt using zmq_filtering.

259

Salt Documentation, Release 2015.8.8

Req Channel
The req channel is implemented using zeromq's req/rep sockets. These sockets enforce a send/recv pattern, which

forces salt to serialize messages through these socket pairs. This means that although the interface is asynchronous
on the minion we cannot send a second message until we have received the reply of the first message.

22.2.2 TCP Transport

The " tcp" transport is an implementation of Salt's channels using raw tcp sockets. Since this isn't using a pre-defined
messaging library we will describe the wire protocol, message semantics, etc. in this document.

Wire Protocol

This implementation over TCP focuses on flexibility over absolute efficiency. This means we are okay to spend a
couple of bytes of wire space for flexibility in the future. That being said, the wire framing is quite efficient and looks
like:

len(payload) msgpack({'head': SOMEHEADER, 'body': SOMEBODY})

The wire protocol is basically two parts, the length of the payload and a payload (which is a msgpack'd dict). Within
that payload we have two items "~ "head" and *"body". Head contains header information (such as " “message id").
The Body contains the actual message that we are sending. With this flexible wire protocol we can implement any
message semantics that we'd like-- including multiplexed message passing on a single socket.

Crypto

The current implementation uses the same crypto as the zeromq transport.

Pub Channel

For the pub channel we send messages without " “message ids" which the remote end interprets as a one-way send.

Note: As of today we send all publishes to all minions and rely on minion-side filtering.

Req Channel

For the req channel we send messages with a *“message id". This " message id" allows us to multiplex messages
across the socket.

22.2.3 The RAET Transport

Note: The RAET transport is in very early development, it is functional but no promises are yet made as to its
reliability or security. As for reliability and security, the encryption used has been audited and our tests show that

raet is reliable. With this said we are still conducting more security audits and pushing the reliability. This document
outlines the encryption used in RAET

New in version 2014.7.0.

260 Chapter 22. Salt Transport

Salt Documentation, Release 2015.8.8

The Reliable Asynchronous Event Transport, or RAET, is an alternative transport medium developed specifically
with Salt in mind. It has been developed to allow queuing to happen up on the application layer and comes with
socket layer encryption. It also abstracts a great deal of control over the socket layer and makes it easy to bubble up
errors and exceptions.

RAET also offers very powerful message routing capabilities, allowing for messages to be routed between processes
on a single machine all the way up to processes on multiple machines. Messages can also be restricted, allowing
processes to be sent messages of specific types from specific sources allowing for trust to be established.

Using RAET in Salt

Using RAET in Salt is easy, the main difference is that the core dependencies change, instead of needing pycrypto,
M2Crypto, ZeroMQ, and PYZMQ, the packages libsodium, libnacl, ioflo, and raet are required. Encryption is handled
very cleanly by libnacl, while the queueing and flow control is handled by ioflo. Distribution packages are forth-
coming, but libsodium can be easily installed from source, or many distributions do ship packages for it. The libnacl
and ioflo packages can be easily installed from pypi, distribution packages are in the works.

Once the new deps are installed the 2014.7 release or higher of Salt needs to be installed.
Once installed, modify the configuration files for the minion and master to set the transport to raet:

/etc/salt/master:

’ transport: raet

/etc/salt/minion:

‘ transport: raet

Now start salt as it would normally be started, the minion will connect to the master and share long term keys, which
can then in turn be managed via salt-key. Remote execution and salt states will function in the same way as with
Salt over ZeroMQ.

Limitations

The 2014.7 release of RAET is not complete! The Syndic and Multi Master have not been completed yet and these
are slated for completion in the 2015.5.0 release.

Also, Salt-Raet allows for more control over the client but these hooks have not been implemented yet, thereforre
the client still uses the same system as the ZeroMQ client. This means that the extra reliability that RAET exposes
has not yet been implemented in the CLI client.

Why?
Customer and User Request

Why make an alternative transport for Salt? There are many reasons, but the primary motivation came from cus-
tomer requests, many large companies came with requests to run Salt over an alternative transport, the reasoning
was varied, from performance and scaling improvements to licensing concerns. These customers have partnered
with SaltStack to make RAET a reality.

22.2. Req Channel 261

http://doc.libsodium.org/
http://doc.libsodium.org/

Salt Documentation, Release 2015.8.8

More Capabilities

RAET has been designed to allow salt to have greater communication capabilities. It has been designed to allow for
development into features which out ZeroMQ topologies can't match.

Many of the proposed features are still under development and will be announced as they enter proof of concept
phases, but these features include salt-fuse - a filesystem over salt, salt-vt - a parallel api driven shell over the salt
transport and many others.

RAET Reliability

RAET is reliable, hence the name (Reliable Asynchronous Event Transport).

The concern posed by some over RAET reliability is based on the fact that RAET uses UDP instead of TCP and UDP
does not have built in reliability.

RAET itself implements the needed reliability layers that are not natively present in UDP, this allows RAET to
dynamically optimize packet delivery in a way that keeps it both reliable and asynchronous.

RAET and ZeroMQ

When using RAET, ZeroMQ is not required. RAET is a complete networking replacement. It is noteworthy that
RAET is not a ZeroMQ replacement in a general sense, the ZeroMQ constructs are not reproduced in RAET, but they
are instead implemented in such a way that is specific to Salt's needs.

RAFT is primarily an async communication layer over truly async connections, defaulting to UDP. ZeroMQ is over
TCP and abstracts async constructs within the socket layer.

Salt is not dropping ZeroMQ support and has no immediate plans to do so.
Encryption
RAET uses Dan Bernstein's NACL encryption libraries and CurveCP handshake. The libnacl python binding binds

to both libsodium and tweetnacl to execute the underlying cryptography. This allows us to completely rely on an
externally developed cryptography system.

Programming Intro

Intro to RAET Programming

Note: This page is still under construction

The first thing to cover is that RAET does not present a socket api, it presents, and queueing api, all messages in
RAET are made available to via queues. This is the single most differentiating factor with RAET vs other networking
libraries, instead of making a socket, a stack is created. Instead of calling send() or recv(), messages are placed on
the stack to be sent and messages that are received appear on the stack.

Different kinds of stacks are also available, currently two stacks exist, the UDP stack, and the UXD stack. The
UDP stack is used to communicate over udp sockets, and the UXD stack is used to communicate over Unix Domain
Sockets.

The UDP stack runs a context for communicating over networks, while the UXD stack has contexts for communi-
cating between processes.

262 Chapter 22. Salt Transport

http://curvecp.org/
http://doc.libsodium.org/

Salt Documentation, Release 2015.8.8

UDP Stack Messages To create a UDP stack in RAET, simply create the stack, manage the queues, and process
messages:

from salt.transport.road.raet +import stacking
from salt.transport.road.raet 1import estating

udp_stack = stacking.StackUdp(ha=('127.0.0.1"', 7870))

r_estate = estating.Estate(stack=stack, name='foo', ha=('192.168.42.42"', 7870))
msg = {'hello': 'world'}

udp_stack.transmit(msg, udp_stack.estates[r_estate.name])
udp_stack.serviceAll()

22.2. Req Channel 263

Salt Documentation, Release 2015.8.8

264 Chapter 22. Salt Transport

CHAPTER 23

Windows Software Repository

Note: In 2015.8.0 and later, the Windows Software Repository cache is compiled on the Salt Minion, which enables
pillar, grains and other things to be available during compilation time. To support this new functionality, a next-

generation (ng) package repository was created. See See the Changes in Version 2015.8.0 for details.

The SaltStack Windows Software Repository provides a package manager and software repository similar to what
is provided by yum and apt on Linux. This repository enables the installation of software using the installers on
remote Windows systems.

In many senses, the operation is similar to that of the other package managers salt is aware of:
« the pkg.installed and similar states work on Windows.
« the pkg.install and similar module functions work on Windows.
High level differences to yum and apt are:
« The repository metadata (SLS files) is hosted through either salt or git.
« Packages can be downloaded from within the salt repository, a git repository or from http(s) or ftp urls.
« No dependencies are managed. Dependencies between packages needs to be managed manually.
Requirements:

+ GitPython 0.3 or later, or pygit2 0.20.3 with libgit 0.20.0 or later installed on your Salt master. The Windows
package definitions are downloaded and updated using Git.

23.1 Configuration

23.1.1 Populate the Repository

The SLS files used to install Windows packages are not distributed by default with Salt. Run the following command
to initialize the repository on your Salt master:

salt-run winrepo.update_git_repos

23.1.2 Sync Repo to Windows Minions

Run pkg.refresh_db on each of your Windows minions to synchronize the package repository.

265

Salt Documentation, Release 2015.8.8

’salt -G 'os:windows' pkg.refresh_db

23.2 Install Windows Software

After completing the configuration steps, you are ready to manage software on your Windows minions.

23.2.1 Show Installed Packages

salt -G 'os:windows' pkg.list_pkgs

23.2.2 Install a Package

You can query the available version of a package using the Salt pkg module.

salt winminion pkg.available_version firefox

{'firefox': {'15.0.1': 'Mozilla Firefox 15.0.1 (x86 en-US)',
'16.0.2': '"Mozilla Firefox 16.0.2 (x86 en-US)',
'17.0.1': '"Mozilla Firefox 17.0.1 (x86 en-US)'}}

As you can see, there are three versions of Firefox available for installation. You can refer a software package by its
name or its full_name surround by single quotes.

‘salt winminion pkg.install 'firefox'

The above line will install the latest version of Firefox.

’salt winminion pkg.install 'firefox' version=16.0.2

The above line will install version 16.0.2 of Firefox.

If a different version of the package is already installed it will be replaced with the version in the winrepo (only if
the package itself supports live updating).

You can also specify the full name:

‘salt winminion pkg.install 'Mozilla Firefox 17.0.1 (x86 en-US)'

23.3 Uninstall Windows Software

Uninstall software using the pkg module:

salt winminion pkg.remove firefox
salt winminion pkg.purge firefox

Note: pkg.purge just executes pkg.remove on Windows. At some point in the future pkg. purge may direct
the installer to remove all configs and settings for software packages that support that option.

266 Chapter 23. Windows Software Repository

Salt Documentation, Release 2015.8.8

23.4 Repository Location

Salt maintains a repository of SLS files to install a large number of Windows packages:
+ 2015.8.0 and later minions: https://github.com/saltstack/salt-winrepo-ng
« Earlier releases: https://github.com/saltstack/salt-winrepo
By default, these repositories are mirrored to /srv/salt/win/repo_ngand /srv/salt/win/repo.

This location can be changed in the master config file by setting the winrepo_dir_ng and winrepo_dir op-
tions.

23.5 Maintaining Windows Repo Definitions in Git Repositories

Windows software package definitions can be hosted in one or more Git repositories. The default repositories are
hosted on GitHub by SaltStack. These include software definition files for various open source software projects.
These software definition files are .sls files. There are two default repositories: salt-winrepo and salt-
winrepo-ng. salt-winrepo contains software definition files for older minions (older than 2015.8.0). salt-
winrepo-ng is for newer minions (2015.8.0 and newer).

Each software definition file contains all the information salt needs to install that software on a minion including
the HTTP or FTP locations of the installer files, required command-line switches for silent install, etc. Anyone
is welcome to send a pull request to this repo to add new package definitions. The repos can be browsed here:
salt-winrepo salt-winrepo-ng

Note: The newer software definition files are run through the salt's parser which allows for the use of jinja.

Configure which git repositories the master can search for package definitions by modifying or extending the win-
repo_remotes and winrepo_remotes_ng options.

Important: winrepo_remotes was called win_gitrepos in Salt versions earlier than 2015.8.0

Package definitions are pulled down from the online repository by running the winrepo.update_git_repos
runner. This command is run on the master:

‘ salt-run winrepo.update_git_repos

This will pull down the software definition files for older minions (salt-winrepo) and new minions (salt-
winrepo-ng). They are stored in the file_roots under win/repo/salt-winrepo and win/repo-
ng/salt-winrepo-ng respectively.

Important: If you have customized software definition files that aren't maintained in a repository, those should be
stored under win/repo for older minions and win/repo—ng for newer minions. The reason for this is that the

contents of win/repo/salt-winrepo and win/repo-ng/salt-winrepo—ng are wiped out every time
yourun awinrepo.update_git_repos.

Additionally, when you run winrepo.genrepo and pkg.refresh_db the entire contents under win/repo
and win/repo—-ng, to include all subdirectories, are used to create the msgpack file.

The next step (if you have older minions) is to create the msgpack file for the repo (winrepo. p). This is done by
running the winrepo. genrepo runner. This is also run on the master:

salt-run winrepo.genrepo

23.4. Repository Location 267

https://github.com/saltstack/salt-winrepo-ng
https://github.com/saltstack/salt-winrepo
https://github.com/saltstack/salt-winrepo.git
https://github.com/saltstack/salt-winrepo-ng.git

Salt Documentation, Release 2015.8.8

Note: If you have only 2015.8.0 and newer minions, you no longer need to run salt-run winrepo.genrepo
on the master.

Finally, you need to refresh the minion database by running the pkg. refresh_db command. This is run on the
master as well:

‘salt 'x' pkg.refresh_db

On older minions (older than 2015.8.0) this will copy the winrepo.p file down to the minion. On newer minions
(2015.8.0 and newer) this will copy all the software definition files (.sls) down to the minion and then create the
msgpack file (winrepo. p) locally. The reason this is done locally is because the jinja needs to be parsed using the
minion's grains.

Important: Every time you modify the software definition files on the master, either by running salt-run win-
repo.update_git_repos, modifying existing files, or by creating your own, you need to refresh the database

on your minions. For older minions, that means running salt-run winrepo.genrepo and then salt 'x*'
pkg.refresh_db. For newer minions (2015.8.0 and newer) it is just salt '*' pkg.refresh_db.

Note: Ifthe winrepo.genrepo or the pkg.refresh_db fails, it is likely a problem with the jinja in one of the
software definition files. This will cause the operations to stop. You'll need to fix the syntax in order for the msgpack

file to be created successfully.

To disable one of the repos, set it to an empty list [] in the master config. For example, to disable win-
repo_remotes set the following in the master config file:

‘ winrepo_remotes: []

23.6 Creating a Package Definition SLS File

The package definition file is a yaml file that contains all the information needed to install a piece of software using
salt. It defines information about the package to include version, full name, flags required for the installer and
uninstaller, whether or not to use the windows task scheduler to install the package, where to find the installation
package, etc.

Take a look at this example for Firefox:

firefox:

'17.0.1":
installer: 'salt://win/repo/firefox/English/Firefox Setup 17.0.1.exe’
full_name: Mozilla Firefox 17.0.1 (x86 en-US)
locale: en_US
reboot: False
install_flags: '-ms'
uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
uninstall_flags: '/S'

'16.0.2"':
installer: 'salt://win/repo/firefox/English/Firefox Setup 16.0.2.exe’
full_name: Mozilla Firefox 16.0.2 (x86 en-US)
locale: en_US
reboot: False
install_flags: '-ms'
uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
uninstall_flags: '/S'

268 Chapter 23. Windows Software Repository

Salt Documentation, Release 2015.8.8

'15.0.1":
installer: 'salt://win/repo/firefox/English/Firefox Setup 15.0.1.exe’
full_name: Mozilla Firefox 15.0.1 (x86 en-US)
locale: en_US
reboot: False
install_flags: '-ms'
uninstaller: '%ProgramFiles(x86)%/Mozilla Firefox/uninstall/helper.exe'
uninstall_flags: '/S'

Each software definition file begins with a package name for the software. As in the example above firefox. The
next line is indented two spaces and contains the version to be defined. As in the example above, a software definition
file can define multiple versions for the same piece of software. The lines following the version are indented two
more spaces and contain all the information needed to install that package.

Warning: The package name and the full_name must be unique to all other packages in the software repos-
itory.

The version line is the version for the package to be installed. It is used when you need to install a specific version
of a piece of software.

Warning: The version must be enclosed in quotes, otherwise the yaml parser will remove trailing zeros.

Note: There are unique situations where previous versions are unavailable. Take Google Chrome
for example. There is only one url provided for a standalone installation of Google Chrome.

(https://dl.google.com/edgedl/chrome/install/ GoogleChromeStandaloneEnterprise.msi) When a new version is
released, the url just points to the new version. To handle situations such as these, set the version to latest. Salt will
install the version of Chrome at the URL and report that version. Here's an example:

chrome:
latest:

full_name: 'Google Chrome'
installer: 'https://dl.google.com/edgedl/chrome/install/GoogleChromeStandaloneEntery
install_flags: '/gn /norestart!'
uninstaller: 'https://dl.google.com/edgedl/chrome/install/GoogleChromeStandaloneEntg
uninstall_flags: '/gn /norestart!'
msiexec: True
locale: en_US
reboot: False

rise.msi'

rrprise.msi’

Available parameters are as follows:

param str full_name The Full Name for the software as shown in " "Programs and Features" in the con-
trol panel. You can also get this information by installing the package manually and then running
pkg.list_pkgs. Here's an example of the output from pkg. list_pkgs:

salt 'test-2008' pkg.list_pkgs
test-2008
7-Zip 9.20 (x64 edition):
9.20.00.0
Microsoft .NET Framework 4 Client Profile:
4.0.30319,4.0.30319
Microsoft .NET Framework 4 Extended:
4.0.30319,4.0.30319
Microsoft Visual C++ 2008 Redistributable - x64 9.0.21022:

23.6. Creating a Package Definition SLS File 269

https://dl.google.com/edgedl/chrome/install/GoogleChromeStandaloneEnterprise.msi

Salt Documentation, Release 2015.8.8

9.0.21022

Mozilla Firefox 17.0.1 (x86 en-US):
17.0.1

Mozilla Maintenance Service:
17.0.1

NSClient++ (x64):
0.3.8.76

Notepad++:
6.4.2

Salt Minion 0.16.0:
0.16.0

Notice the Full Name for Firefox: Mozilla Firefox 17.0.0 (x86 en-US). That's exactly what's in the full_name pa-
rameter in the software definition file.

If any of the software insalled on the machine matches one of the software definition files in the repository the
full_name will be automatically renamed to the package name. The example below shows the pkg.list_pkgs
for a machine that already has Mozilla Firefox 17.0.1 installed.

test-2008:

9.20.00.0

Microsoft .NET Framework 4 Client Profile:
4.0.30319,4.0.30319

Microsoft .NET Framework 4 Extended:
4.0.30319,4.0.30319

Microsoft Visual C++ 2008 Redistributable - x64 9.0.21022:
9.0.21022

Mozilla Maintenance Service:
17.0.1

Notepad++:
6.4.2

Salt Minion 0.16.0:
0.16.0

firefox:
17.0.1

nsclient:
0.3.9.328

Important: The version number and full_name need to match the output from pkg. list_pkgs so that the
status can be verified when running highstate.

Note: It is still possible to successfully install packages using pkg.install even if they don't match. This can
make troubleshooting difficult so be careful.

param str installer The path to the .exe or .ms1 to use to install the package. This can be a path or
a URL. If it is a URL or a salt path (salt://), the package will be cached locally and then executed. If
it is a path to a file on disk or a file share, it will be executed directly.

param str install_flags Any flags that need to be passed to the installer to make it perform a silent in-
stall. These can often be found by adding /? or /h when running the installer from the command-
line. A great resource for finding these silent install flags can be found on the WPKG project's wiki:

Salt will not return if the installer is waiting for user input so these are important.

param str uninstaller The path to the program used to uninstall this software. This can be the path to
the same exe or msi used to install the software. It can also be a GUID. You can find this value in

270 Chapter 23. Windows Software Repository

http://wpkg.org/Category:Silent_Installers

Salt Documentation, Release 2015.8.8

the registry under the following keys:
« Software\Microsoft\Windows\CurrentVersion\Uninstall
« Software\Wow6432None\Microsoft\Windows\CurrentVersion\Uninstall

param str uninstall_flags Any flags that need to be passed to the uninstaller to make it perform a silent
uninstall. These can often be found by adding /? or /h when running the uninstaller from the
command-line. A great resource for finding these silent install flags can be found on the WPKG
project's wiki:

Salt will not return if the uninstaller is waiting for user input so these are important.

Here are some examples of installer and uninstaller settings:

Tzip:
'9.20.00.0":
installer: salt://win/repo/7zip/7z920-x64.msi
full_name: 7-Zip 9.20 (x64 edition)
reboot: False
install_flags: '/qn /norestart'
msiexec: True
uninstaller: '{23170F69-40C1-2702-0920-000001000000}"
uninstall_flags: '/gn /norestart'

Alternatively the uninstaller can also simply repeat the URL of the msi file.

Tzip:
'9.20.00.0":
installer: salt://win/repo/7zip/7z920-x64.msi
full_name: 7-Zip 9.20 (x64 edition)
reboot: False
install_flags: '/gn /norestart!'
msiexec: True
uninstaller: salt://win/repo/7zip/7z920-x64.msi
uninstall_flags: '/gn /norestart'

param bool msiexec This tells salt to use msiexec /i to install the package and msiexec /x to
uninstall. This is for .msi installations.

param bool allusers This parameter is specific to .msi installations. It tells msiexec to install the software
for all users. The default is True.

param bool cache_dir If true, the entire directory where the installer resides will be recursively cached.
This is useful for installers that depend on other files in the same directory for installation.

Note: Only applies to salt: installer URLs.

Here's an example for a software package that has dependent files:

sqlexpress:
'12.0.2000.8"':
installer: 'salt://win/repo/sqlexpress/setup.exe'
full_name: Microsoft SQL Server 2014 Setup (English)
reboot: False
install_flags: '/ACTION=1install /IACCEPTSQLSERVERLICENSETERMS /Q'
cache_dir: True

param bool use_scheduler If true, windows will use the task scheduler to run the installation. This is
useful for running the salt installation itself as the installation process kills any currently running
instances of salt.

23.6. Creating a Package Definition SLS File

271

http://wpkg.org/Category:Silent_Installers

Salt Documentation, Release 2015.8.8

param bool reboot Not implemented
param str local Not implemented

Examples can be found at https://github.com/saltstack/salt-winrepo-ng

23.7 Managing Windows Software on a Standalone Windows Minion

The Windows Package Repository functions similar in a standalone environment, with a few differences in the
configuration.

To replace the winrepo runner that is used on the Salt master, an execution module exists to provide the same
functionality to standalone minions. The functions are named the same as the ones in the runner, and are used in
the same way; the only difference is that salt—call is used instead of salt-run:

salt-call winrepo.update_git_repos
salt-call winrepo.genrepo
salt-call pkg.refresh_db

After executing the previous commands the repository on the standalone system is ready to use.

23.7.1 Custom Location for Repository SLS Files

If file_roots has not been modified in the minion configuration, then no additional configuration needs to be
added to the minion configuration. The winrepo.genrepo function from the winrepo execution module will
by default look for the filename specified by winrepo_cachefile within C:\salt\srv\salt\win\repo.

If the file_roots parameter has been modified, then winrepo_dir must be modified to fall within that path,
at the proper relative path. For example, if the base environment in i le_roots points to D: \ foo, and win-
repo_source_dirissalt://win/repo,thenwinrepo_dir mustbesettoD:\foo\win\repo toensure
that winrepo. genrepo puts the cachefile into right location.

23.8 Config Options for Minions 2015.8.0 and Later

The winrepo_source_dir config parameter (default: salt://win/repo) controls where
pkg.refresh_db looks for the cachefile (default: winrepo.p). This means that the default location for
the winrepo cachefile would be salt://win/repo/winrepo.p. Both winrepo_source_dir and
winrepo_cachefile can be adjusted to match the actual location of this file on the Salt fileserver.

23.9 Config Options for Minions Before 2015.8.0

If connected to a master, the minion will by default look for the winrepo cachefile (the file generated by the win-
repo.genrepo runner)atsalt://win/repo/winrepo.p. If the cachefile is in a different path on the salt
fileserver, then win_repo_cachefile will need to be updated to reflect the proper location.

23.10 Changes in Version 2015.8.0

Git repository management for the Windows Software Repository has changed in version 2015.8.0, and several mas-
ter/minion config parameters have been renamed to make their naming more consistent with each other.

272 Chapter 23. Windows Software Repository

https://github.com/saltstack/salt-winrepo-ng

Salt Documentation, Release 2015.8.8

For a list of the winrepo config options, see here for master config options, and here for configuration options for
masterless Windows minions.

On the master, the winrepo.update_git_repos runner has been updated to use either pygit2 or GitPython
to checkout the git repositories containing repo data. If pygit2 or GitPython is installed, existing winrepo git
checkouts should be removed after upgrading to 2015.8.0, to allow them to be checked out again by running win-
repo.update_git_repos.

If neither GitPython nor pygit2 are installed, then Salt will fall back to the pre-existing behavior for win-
repo.update_git_repos, and a warning will be logged in the master log.

Note: Standalone Windows minions do not support the new GitPython/pygit2 functionality, and will instead use
the git. latest state to keep repositories up-to-date. More information on how to use the Windows Software

Repo on a standalone minion can be found here.

23.10.1 Config Parameters Renamed

Many of the legacy winrepo configuration parameters have changed in version 2015.8.0 to make the naming more
consistent. The old parameter names will still work, but a warning will be logged indicating that the old name is
deprecated.

Below are the parameters which have changed for version 2015.8.0:

Master Config

Old Name New Name

win_repo winrepo_dir
win_repo_mastercachefile | winrepo_cachefile
win_gitrepos winrepo_remotes

Note: winrepo_cachefile is no longer used by 2015.8.0 and later minions, and the winrepo_dr setting is
replaced by winrepo_dir_ng for 2015.8.0 and later minions.

See here for detailed information on all master config options for the Windows Repo.

Minion Config

Old Name New Name

win_repo winrepo_dir
win_repo_cachefile | winrepo_cachefile
win_gitrepos winrepo_remotes

See here for detailed information on all minion config options for the Windows Repo.

23.10.2 pygit2/GitPython Support for Maintaining Git Repos

Thewinrepo.update_git_repos runner (and the corresponding remote execution function for stan-
dalone minions) now makes use of the same underlying code used by the Git Fileserver Backend and Git External
Pillar to maintain and update its local clones of git repositories. If a compatible version of either pygit2 (0.20.3
and later) or GitPython (0.3.0 or later) is installed, then Salt will use it instead of the old method (which invokes the
git. latest state).

23.10. Changes in Version 2015.8.0 273

https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2015.8.8

Note: If compatible versions of both pygit2 and GitPython are installed, then Salt will prefer pygit2, to override this
behavior use the winrepo_provider configuration parameter:

winrepo_provider: gitpython

The winrepo execution module (discussed above in the Managing Windows Software on a Standalone Win-
dows Minion section) does not yet officially support the new pygit2/GitPython functionality, but if either pygit2 or
GitPython is installed into Salt's bundled Python then it should work. However, it should be considered experimental
at this time.

To minimize potential issues, it is a good idea to remove any winrepo git repositories that were checked
out by the old (pre-2015.8.0) winrepo code when upgrading the master to 2015.8.0 or later, and run win-
repo.update_git_repos to clone them anew after the master is started.

Additional added features include the ability to access authenticated git repositories (NOTE: pygit2 only), and to set
per-remote config settings. An example of this would be the following:

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git
- git@github.com:myuser/myrepo.git:
- pubkey: /path/to/key.pub
- privkey: /path/to/key
- passphrase: myaw3sOm3pas$$phr4s$3
- https://github.com/myuser/privaterepo.git:
- user: mygithubuser
- password: CorrectHorseBatteryStaple

Note: Per-remote configuration settings work in the same fashion as they do in gitfs, with global parameters
being overridden by their per-remote counterparts (for instance, settingwinrepo_passphrase would set a global

passphrase for winrepo that would apply to all SSH-based remotes, unless overridden by a passphrase per-remote
parameter).

See here for more a more in-depth explanation of how per-remote configuration works in gitfs, the same principles
apply to winrepo.

There are a couple other changes in how Salt manages git repos using pygit2/GitPython. First of all, a clean
argument has been added to the winrepo.update_git_repos runner, which (if set to True) will tell the
runner to dispose of directories under the winrepo_dir which are not explicitly configured. This prevents the
need to manually remove these directories when a repo is removed from the config file. To clean these old directories,
just pass clean=True, like so:

salt-run winrepo.update_git_repos clean=True

However, if a mix of git and non-git Windows Repo definition files are being used, then this should not be used, as
it will remove the directories containing non-git definitions.

The other major change is that collisions between repo names are now detected, and the win-
repo.update_git_repos runner will not proceed if any are detected. Consider the following configuration:

winrepo_remotes:
- https://foo.com/bar/baz.git
- https://mydomain.tld/baz.git
- https://github.com/foobar/baz

The winrepo.update_git_repos runner will refuse to update repos here, as all three of these repos would be
checked out to the same directory. To work around this, a per-remote parameter called name can be used to resolve
these conflicts:

274 Chapter 23. Windows Software Repository

https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2015.8.8

winrepo_remotes:
- https://foo.com/bar/baz.git
- https://mydomain.tld/baz.git:
- name: baz_junior
- https://github.com/foobar/baz:
- name: baz_the_third

23.11 Troubleshooting

23.11.1 Incorrect name/version

If the package seems to install properly, but salt reports a failure then it is likely you have a version or full_name
mismatch.

Check the exact full_name and version used by the package. Use pkg. 1ist_pkgs to check that the names and
version exactly match what is installed.

23.11.2 Changes to sls files not being picked up

Ensure you have (re)generated the repository cache file (for older minions) and then updated the repository cache
on the relevant minions:

salt-run winrepo.genrepo
salt winminion pkg.refresh_db

23.11.3 Packages management under Windows 2003

On Windows server 2003, you need to install optional Windows component " wmi windows installer provider" to
have full list of installed packages. If you don't have this, salt-minion can't report some installed software.

23.11.4 How Success and Failure are Reported

The install state/module function of the Windows package manager works roughly as follows:
1. Execute pkg. list_pkgs and store the result

2. Check if any action needs to be taken. (i.e. compare required package and version against pkg. list_pkgs
results)

3. If so, run the installer command.
4. Execute pkg.list_pkgs and compare to the result stored from before installation.

5. Success/Failure/Changes will be reported based on the differences between the original and final
pkg.list_pkgs results.

If there are any problems in using the package manager it is likely due to the data in your sls files not matching the
difference between the pre and post pkg. list_pkgs results.

23.11. Troubleshooting 275

Salt Documentation, Release 2015.8.8

276 Chapter 23. Windows Software Repository

CHAPTER 24

Windows-specific Behaviour

Salt is capable of managing Windows systems, however due to various differences between the operating systems,
there are some things you need to keep in mind.

This document will contain any quirks that apply across Salt or generally across multiple module functions. Any
Windows-specific behavior for particular module functions will be documented in the module function documenta-
tion. Therefore this document should be read in conjunction with the module function documentation.

24.1 Group parameter for files

Salt was originally written for managing Unix-based systems, and therefore the file module functions were designed
around that security model. Rather than trying to shoehorn that model on to Windows, Salt ignores these parameters
and makes non-applicable module functions unavailable instead.

One of the commonly ignored parameters is the group parameter for managing files. Under Windows, while files do
have a “primary group' property, this is rarely used. It generally has no bearing on permissions unless intentionally
configured and is most commonly used to provide Unix compatibility (e.g. Services For Unix, NFS services).

Because of this, any file module functions that typically require a group, do not under Windows. Attempts to directly
use file module functions that operate on the group (e.g. file.chgrp) will return a pseudo-value and cause a log
message to appear. No group parameters will be acted on.

If you do want to access and change the “primary group' property and understand the implications, use the
file.get_pgid or file.get_pgroup functions or the pgroup parameter on the file.chown module
function.

24.2 Dealing with case-insensitive but case-preserving names

Windows is case-insensitive, but however preserves the case of names and it is this preserved form that is returned
from system functions. This causes some issues with Salt because it assumes case-sensitive names. These issues
generally occur in the state functions and can cause bizarre looking errors.

To avoid such issues, always pretend Windows is case-sensitive and use the right case for names, e.g. specify
user=Administrator instead of user=administrator.

Follow issue 11801 for any changes to this behavior.

277

https://github.com/saltstack/salt/issues/11801

Salt Documentation, Release 2015.8.8

24.3 Dealing with various username forms

Salt does not understand the various forms that Windows usernames can come in, e.g. username, mydo-
main\username, username@mydomain.tld can all refer to the same user. In fact, Salt generally only considers the
raw username value, i.e. the username without the domain or host information.

Using these alternative forms will likely confuse Salt and cause odd errors to happen. Use only the raw username
value in the correct case to avoid problems.

Follow issue 11801 for any changes to this behavior.

24.4 Specifying the None group

Each Windows system has built-in _None_ group. This is the default "primary group' for files for users not on a
domain environment.

Unfortunately, the word _None_ has special meaning in Python - it is a special value indicating "nothing', similar to
nNull or nil in other languages.

To specify the None group, it must be specified in quotes, e.g. . /salt '+x' file.chpgrp C:\path\to\file
mi None) ||.

24.5 Symbolic link loops

Under Windows, if any symbolic link loops are detected or if there are too many levels of symlinks (defaults to 64),
an error is always raised.

For some functions, this behavior is different to the behavior on Unix platforms. In general, avoid symlink loops on
either platform.

24.6 Modifying security properties (ACLs) on files

There is no support in Salt for modifying ACLs, and therefore no support for changing file permissions, besides
modifying the owner/user.

278 Chapter 24. Windows-specific Behaviour

mailto:username@mydomain.tld
https://github.com/saltstack/salt/issues/11801

CHAPTER 25

Salt Cloud

25.1 Configuration

Salt Cloud provides a powerful interface to interact with cloud hosts. This interface is tightly integrated with Salt,
and new virtual machines are automatically connected to your Salt master after creation.

Since Salt Cloud is designed to be an automated system, most configuration is done using the following YAML
configuration files:

. /etc/salt/cloud: The main configuration file, contains global settings that apply to all cloud hosts. See
Salt Cloud Configuration.

. /etc/salt/cloud.providers.d/*.conf: Contains settings that configure a specific cloud host, such
as credentials, region settings, and so on. Since configuration varies significantly between each cloud host, a
separate file should be created for each cloud host. In Salt Cloud, a provider is synonymous with a cloud host
(Amazon EC2, Google Compute Engine, Rackspace, and so on). See Provider Specifics.

. /etc/salt/cloud.profiles.d/*.conf: Contains settings that define a specific VM type. A profile
defines the systems specs and image, and any other settings that are specific to this VM type. Each specific VM
type is called a profile, and multiple profiles can be defined in a profile file. Each profile references a parent
provider that defines the cloud host in which the VM is created (the provider settings are in the provider
configuration explained above). Based on your needs, you might define different profiles for web servers,
database servers, and so on. See VM Profiles.

25.2 Configuration Inheritance
Configuration settings are inherited in order from the cloud config => providers => profile.
% Cloud Config
/etc/salt/cloud

= = Cloud Providers

— — /etc/salt/cloud.providers.d/*.conf

Cloud Profiles

fetc/salt/cloud.profiles.d/*.conf

For example, if you wanted to use the same image for all virtual machines for a specific provider, the image name
could be placed in the provider file. This value is inherited by all profiles that use that provider, but is overridden if
a image name is defined in the profile.

279

Salt Documentation, Release 2015.8.8

Most configuration settings can be defined in any file, the main difference being how that setting is inherited.

25.3 QuickStart

The Salt Cloud Quickstart walks you through defining a provider, a VM profile, and shows you how to create virtual
machines using Salt Cloud.

25.4 Using Salt Cloud

25.4.1 salt-cloud

Provision virtual machines in the cloud with Salt

Synopsis

salt-cloud -m /etc/salt/cloud.map

salt-cloud -m /etc/salt/cloud.map NAME
salt-cloud -m /etc/salt/cloud.map NAME1l NAME2

salt-cloud -p PROFILE NAME

salt-cloud -p PROFILE NAME1 NAME2 NAME3 NAME4 NAME5 NAMEG6

Description

Salt Cloud is the system used to provision virtual machines on various public clouds via a cleanly controlled profile
and mapping system.

Options

--version
Print the version of Salt that is running.

--versions-report

Show program's dependencies and version number, and then exit
-h, --help

Show the help message and exit
-c CONFIG_DIR, --config-dir=CONFIG_dir

The location of the Salt configuration directory. This directory contains the configuration files for Salt master
and minions. The default location on most systems is /etc/salt.

280 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Execution Options

-L LOCATION, --location=LOCATION

Specify which region to connect to.

-a ACTION, —--action=ACTION

Perform an action that may be specific to this cloud provider. This argument requires one or more instance
names to be specified.

-f <FUNC-NAME> <PROVIDER>, —--function=<FUNC-NAME> <PROVIDER>

Perform an function that may be specific to this cloud provider, that does not apply to an instance. This
argument requires a provider to be specified (i.e.: nova).

-p PROFILE, —--profile=PROFILE

Select a single profile to build the named cloud VMs from. The profile must be defined in the specified profiles
file.

-m MAP, —--map=MAP

_H’

Specify a map file to use. If used without any other options, this option will ensure that all of the mapped VMs
are created. If the named VM already exists then it will be skipped.

--hard

When specifying a map file, the default behavior is to ensure that all of the VMs specified in the map file are
created. If the --hard option is set, then any VMs that exist on configured cloud providers that are not specified
in the map file will be destroyed. Be advised that this can be a destructive operation and should be used with
care.

--destroy

Pass in the name(s) of VMs to destroy, salt-cloud will search the configured cloud providers for the specified
names and destroy the VMs. Be advised that this is a destructive operation and should be used with care. Can
be used in conjunction with the -m option to specify a map of VMs to be deleted.

—-—-parallel
Normally when building many cloud VMs they are executed serially. The -P option will run each cloud v
build in a separate process allowing for large groups of VMs to be build at once.

Be advised that some cloud provider's systems don't seem to be well suited for this influx of v creation. When
creating large groups of VMs watch the cloud provider carefully.

—--update-bootstrap
Update salt-bootstrap to the latest stable bootstrap release.

——assume-yes
Default yes in answer to all confirmation questions.

--keep-tmp
Do not remove files from /tmp/ after deploy.sh finishes.

--show-deploy-args

Include the options used to deploy the minion in the data returned.

--script-args=SCRIPT_ARGS

Script arguments to be fed to the bootstrap script when deploying the VM.

Query Options

_Q’

--query
Execute a query and return some information about the nodes running on configured cloud providers

25.4. Using Salt Cloud 281

Salt Documentation, Release 2015.8.8

-F, —-—-full-query
Execute a query and print out all available information about all cloud VMs. Can be used in conjunction with
-m to display only information about the specified map.

-S, --select-query
Execute a query and print out selected information about all cloud VMs. Can be used in conjunction with -m
to display only information about the specified map.

--list-providers
Display a list of configured providers.

--list-profiles
New in version 2014.7.0.

Display a list of configured profiles. Pass in a cloud provider to view the provider's associated profiles, such
asdigital_ocean, or passin all to list all the configured profiles.

Cloud Providers Listings

--Tlist-locations=LIST_LOCATIONS
Display a list of locations available in configured cloud providers. Pass the cloud provider that available loca-
tions are desired on, aka *'linode", or pass " “all" to list locations for all configured cloud providers

--list-images=LIST_IMAGES
Display a list of images available in configured cloud providers. Pass the cloud provider that available images
are desired on, aka "“linode", or pass "all” to list images for all configured cloud providers

--1list-sizes=LIST_SIZES
Display a list of sizes available in configured cloud providers. Pass the cloud provider that available sizes are
desired on, aka **AWS", or pass " all" to list sizes for all configured cloud providers

Cloud Credentials

--set-password=<USERNAME> <PROVIDER>
Configure password for a cloud provider and save it to the keyring. PROVIDER can be specified with
or without a driver, for example: " --set-password bob rackspace" or more specific * --set-password bob
rackspace:openstack” DEPRECATED!

Output Options

--out
Pass in an alternative outputter to display the return of data. This outputter can be any of the available out-
putters:

grains, highstate, json, key, overstatestage, pprint, raw, txt, yaml

Some outputters are formatted only for data returned from specific functions; for instance, the grains out-
putter will not work for non-grains data.

If an outputter is used that does not support the data passed into it, then Salt will fall back on the pprint
outputter and display the return data using the Python pprint standard library module.

Note: If using ——out=7json, you will probably want ——static as well. Without the static option, you will
get a separate JSON string per minion which makes JSON output invalid as a whole. This is due to using an

iterative outputter. So if you want to feed it to a JSON parser, use -——static as well.

282 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT
Print the output indented by the provided value in spaces. Negative values disable indentation. Only applicable
in outputters that support indentation.

--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE
Write the output to the specified file.

--no-color
Disable all colored output

-—force-color
Force colored output

Note: When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes changes and success and yellow denotes a
expected future change in configuration.

Examples

To create 4 VMs named web1, web2, db1, and db2 from specified profiles:

‘salt—cloud -p fedora_rackspace webl web2 dbl db2

To read in a map file and create all VMs specified therein:

’salt—cloud -m /path/to/cloud.map

To read in a map file and create all VMs specified therein in parallel:

’salt—cloud -m /path/to/cloud.map -P

To delete any VMs specified in the map file:

’salt—cloud -m /path/to/cloud.map -d

To delete any VMs NOT specified in the map file:

‘salt—cloud -m /path/to/cloud.map -H

To display the status of all VMs specified in the map file:

’salt—cloud -m /path/to/cloud.map -Q

See also

salt-cloud(7) salt(7) salt-master (1) salt-minion(1)

25.4.2 Salt Cloud basic usage

Salt Cloud needs, at least, one configured Provider and Profile to be functional.

25.4. Using Salt Cloud 283

Salt Documentation, Release 2015.8.8

Creating a VM

To create a VM with salt cloud, use command:

salt-cloud -p <profile> name_of_vm

Assuming there is a profile configured as following:

fedora_rackspace:
provider: my-rackspace-config
image: Fedora 17
size: 256 server
script: bootstrap-salt

Then, the command to create new VM named fedora_http_01 is:

salt-cloud -p fedora_rackspace fedora_http_01

Destroying a VM

To destroy a created-by-salt-cloud VM, use command:

’salt-cloud -d name_of_vm

For example, to delete the VM created on above example, use:

‘salt—cloud -d fedora_http_01

25.4.3 VM Profiles

Salt cloud designates virtual machines inside the profile configuration file. The profile configuration file defaults to
/etc/salt/cloud.profiles andis a yaml configuration. The syntax for declaring profiles is simple:

fedora_rackspace:
provider: my-rackspace-config
image: Fedora 17
size: 256 server
script: bootstrap-salt

It should be noted that the script option defaults to bootstrap—-salt, and does not normally need to be
specified. Further examples in this document will not show the script option.

A few key pieces of information need to be declared and can change based on the cloud provider. A number of
additional parameters can also be inserted:

centos_rackspace:

provider: my-rackspace-config

image: Cent0S 6.2

size: 1024 server

minion:
master: salt.example.com
append_domain: webs.example.com
grains:

role: webserver

The image must be selected from available images. Similarly, sizes must be selected from the list of sizes. To get a
list of available images and sizes use the following command:

284 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

salt-cloud --list-images openstack
salt-cloud --list-sizes openstack

Some parameters can be specified in the main Salt cloud configuration file and then are applied to all cloud profiles.
For instance if only a single cloud provider is being used then the provider option can be declared in the Salt cloud
configuration file.

Multiple Configuration Files

In addition to /etc/salt/cloud.profiles, profiles can also be specified in any file matching
cloud.profiles.d/*conf which is a sub-directory relative to the profiles configuration file(with the above
configuration file as an example, /etc/salt/cloud.profiles.d/*.conf). This allows for more extensible
configuration, and plays nicely with various configuration management tools as well as version control systems.

Larger Example

rhel_ec2:
provider: my-ec2-config
image: ami-e565ba8c
size: tl.micro
minion:
cheese: edam

ubuntu_ec2:
provider: my-ec2-config
image: ami-7e2da54e
size: tl.micro
minion:
cheese: edam

ubuntu_rackspace:
provider: my-rackspace-config
image: Ubuntu 12.04 LTS
size: 256 server
minion:
cheese: edam

fedora_rackspace:
provider: my-rackspace-config
image: Fedora 17
size: 256 server
minion:
cheese: edam

cent_linode:
provider: my-linode-config
image: CentO0S 6.2 64bit
size: Linode 512

cent_gogrid:
provider: my-gogrid-config
image: 12834
size: 512MB

cent_joyent:

25.4. Using Salt Cloud 285

Salt Documentation, Release 2015.8.8

provider: my-joyent-config
image: centos-6
size: Small 1GB

25.4.4 Cloud Map File

A number of options exist when creating virtual machines. They can be managed directly from profiles and the
command line execution, or a more complex map file can be created. The map file allows for a number of virtual
machines to be created and associated with specific profiles. The map file is designed to be run once to create these
more complex scenarios using salt-cloud.

Map files have a simple format, specify a profile and then a list of virtual machines to make from said profile:

fedora_small:

- webl

- web2

- web3
fedora_h1igh:

- redisl

- redis2

- redis3
cent_high:

- riakl

- riak2

- riak3

This map file can then be called to roll out all of these virtual machines. Map files are called from the salt-cloud
command with the -m option:

’$ salt-cloud -m /path/to/mapfile

Remember, that as with direct profile provisioning the -P option can be passed to create the virtual machines in
parallel:

’$ salt-cloud -m /path/to/mapfile -P

Note: Due to limitations in the GoGrid API instances cannot be provisioned in parallel with the GoGrid driver.
Map files will work with GoGrid, but the —P argument should not be used on maps referencing GoGrid instances.

A map file can also be enforced to represent the total state of a cloud deployment by using the ——hard option.
When using the hard option any vms that exist but are not specified in the map file will be destroyed:

‘$ salt-cloud -m /path/to/mapfile -P -H

Be careful with this argument, it is very dangerous! In fact, it is so dangerous that in order to use it, you must
explicitly enable it in the main configuration file.

’ enable_hard_maps: True

A map file can include grains and minion configuration options:

fedora_small:
- webl:
minion:
log_level: debug
grains:
cheese: tasty

286 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

omelet: du fromage
- web2:
minion:
log_level: warn
grains:
cheese: more tasty
omelet: with peppers

A map file may also be used with the various query options:

$ salt-cloud -m /path/to/mapfile -Q
{'ec2': {'webl': {'id': 'di-ebaqfegb',
"image': None,
'private_ips': [],
'public_1ips': [],
'size': None,
'state': 0}},
'web2': {'Absent'}}

...or with the delete option:

$ salt-cloud -m /path/to/mapfile -d

The following virtual machines are set to be destroyed:
webl
web?2

Proceed? [N/y]

Warning: Specifying Nodes with Maps on the Command Line Specifying the name of a node or nodes with
the maps options on the command line is not supported. This is especially important to remember when using
—--destroy with maps; salt-cloud will ignore any arguments passed in which are not directly relevant to
the map file. When using " --destroy’ " with a map, every node in the map file will be deleted! Maps don't provide
any useful information for destroying individual nodes, and should not be used to destroy a subset of a map.

Setting up New Salt Masters

Bootstrapping a new master in the map is as simple as:

fedora_small:
- webl:
make_master: True
- web2
- web3

Notice that ALL bootstrapped minions from the map will answer to the newly created salt-master.

To make any of the bootstrapped minions answer to the bootstrapping salt-master as opposed to the newly created
salt-master, as an example:

fedora_small:
- webl:
make_master: True
minion:
master: <the local master ip address>
local_master: True
- web2
- web3

25.4. Using Salt Cloud 287

Salt Documentation, Release 2015.8.8

The above says the minion running on the newly created salt-master responds to the local master, ie, the master used
to bootstrap these VMs.

Another example:

fedora_small:
- webl:
make_master: True
- web2
- web3:
minion:
master: <the local master ip address>
local_master: True

The above example makes the web3 minion answer to the local master, not the newly created master.

25.4.5 Cloud Actions

Once a VM has been created, there are a number of actions that can be performed on it. The "“reboot" action can be
used across all providers, but all other actions are specific to the cloud provider. In order to perform an action, you
may specify it from the command line, including the name(s) of the VM to perform the action on:

$ salt-cloud -a reboot vm_name
$ salt-cloud -a reboot vml vm2 vm2

Or you may specify a map which includes all VMs to perform the action on:

$ salt-cloud -a reboot -m /path/to/mapfile

The following is a list of actions currently supported by salt-cloud:

all providers:

- reboot
ec2:

- start

- stop
joyent:

- stop
linode:

- start

- stop

Another useful reference for viewing more salt-cloud actions is the :ref:Salt Cloud Feature Matrix <salt-cloud-feature-
matrix>

25.4.6 Cloud Functions

Cloud functions work much the same way as cloud actions, except that they don't perform an operation on a specific
instance, and so do not need a machine name to be specified. However, since they perform an operation on a specific
cloud provider, that provider must be specified.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

There are three universal salt-cloud functions that are extremely useful for gathering information about instances
on a provider basis:

« list_nodes: Returns some general information about the instances for the given provider.

288 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

« list_nodes_full: Returns all information about the instances for the given provider.

« list_nodes_select: Returns select information about the instances for the given provider.

$ salt-cloud -f list_nodes linode
$ salt-cloud -f list_nodes_full linode
$ salt-cloud -f list_nodes_select linode

Another useful reference for viewing salt-cloud functions is the :ref:Salt Cloud Feature Matrix <salt-cloud-feature-
matrix>

25.5 Core Configuration

25.5.1 Install Salt Cloud

Salt Cloud is now part of Salt proper. It was merged in as of Salt version 2014.1.0.

On Ubuntu, install Salt Cloud by using following command:

sudo add-apt-repository ppa:saltstack/salt
sudo apt-get update
sudo apt-get 1install salt-cloud

If using Salt Cloud on OS X, curl-ca-bundle must be installed. Presently, this package is not available via brew,
but it is available using MacPorts:

sudo port install curl-ca-bundle

Salt Cloud depends on apache-1libcloud. Libcloud can be installed via pip with pip install apache-
libcloud.

Installing Salt Cloud for development

Installing Salt for development enables Salt Cloud development as well, just make sure apache-1libcloud is
installed as per above paragraph.

See these instructions: Installing Salt for development.

25.5.2 Core Configuration

A number of core configuration options and some options that are global to the VM profiles can be set in the cloud
configuration file. By default this file is located at /etc/salt/cloud.

Thread Pool Size

When salt cloud is operating in parallel mode via the —P argument, you can control the thread pool size by specifying
the pool_s1ze parameter with a positive integer value.

By default, the thread pool size will be set to the number of VMs that salt cloud is operating on.

pool_size: 10

25.5. Core Configuration 289

Salt Documentation, Release 2015.8.8

Minion Configuration

The default minion configuration is set up in this file. Minions created by salt-cloud derive their configuration from
this file. Almost all parameters found in Configuring the Salt Minion can be used here.

minion:
master: saltmaster.example.com

In particular, this is the location to specify the location of the salt master and its listening port, if the port is not set
to the default.

Similar to most other settings, Minion configuration settings are inherited across configuration files. For example,
the master setting might be contained in the main cloud configuration file as demonstrated above, but additional
settings can be placed in the provider or profile:

ec2-web:
size: tl.micro
minion:
environment: test
startup_states: sls
sls_Tlist:
- web

Cloud Configuration Syntax

The data specific to interacting with public clouds is set up here.

Cloud provider configuration settings can live in several places. The first is in /etc/salt/cloud:

Jetc/salt/cloud
providers:
my-aws-migrated-config:

id: HIGRYCILJILKIYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
driver: ec2

Cloud provider configuration data can also be housed in /etc/salt/cloud.providers or any file matching
/etc/salt/cloud.providers.d/*.conf. Allfiles in any of these locations will be parsed for cloud provider
data.

Using the example configuration above:

/Jetc/salt/cloud.providers
or could be /Jetc/salt/cloud.providers.d/*.conf
my-aws-config:
id: HJIGRYCILJLKIYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
driver: ec2

Note: Salt Cloud provider configurations within /etc/cloud.provider.d/ should not specify the
" " providers starting key.

290 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

It is also possible to have multiple cloud configuration blocks within the same alias block. For example:

production-config:
- id: HJIGRYCILJLKIYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
driver: ec2

- user: example_user
apikey: 123984bjjas87034
driver: rackspace

However, using this configuration method requires a change with profile configuration blocks. The provider alias
needs to have the provider key value appended as in the following example:

rhel_aws_dev:
provider: production-config:ec2
image: ami-e565ba8c
size: tl.micro

rhel_aws_prod:
provider: production-config:ec2
image: ami-e565ba8c
size: High-CPU Extra Large Instance

database_prod:
provider: production-config:rackspace
image: Ubuntu 12.04 LTS
size: 256 server

Notice that because of the multiple entries, one has to be explicit about the provider alias and name, from the above
example, production-config: ec2.

This data interactions with the salt-cloud binary regarding its ——list-location, -—-1list-images, and
—--11ist-sizes which needs a cloud provider as an argument. The argument used should be the configured cloud
provider alias. If the provider alias has multiple entries, <provider-alias>: <provider-name> should be
used.

To allow for a more extensible configuration, --providers-config, which defaults to
/etc/salt/cloud.providers, was added to the cli parser. It allows for the providers' configuration
to be added on a per-file basis.

Pillar Configuration

It is possible to configure cloud providers using pillars. This is only used when inside the cloud module. You can
setup a variable called cloud that contains your profile and provider to pass that information to the cloud servers
instead of having to copy the full configuration to every minion. In your pillar file, you would use something like
this:

cloud:
ssh_key_name: saltstack
ssh_key_file: /root/.ssh/id_rsa
update_cachedir: True
diff_cache_events: True
change_password: True

25.5. Core Configuration 291

Salt Documentation, Release 2015.8.8

providers:
my-nova:

identity_url: https://identity.api.rackspacecloud.com/v2.0/
compute_region: IAD
user: myuser
api_key: apikey
tenant: 123456
driver: nova

my-openstack:
identity_url: https://identity.api.rackspacecloud.com/v2.0/tokens
user: user2
apikey: apikey2
tenant: 654321
compute_region: DFW
driver: openstack
compute_name: cloudServersOpenStack

profiles:
ubuntu-nova:
provider: my-nova
size: performancel-8
image: bb02bla3-bc77-4d17-ab5b-421d89850fca
script_args: git develop

ubuntu-openstack:
provider: my-openstack
size: performancel-8
image: bb02bla3-bc77-4d17-ab5b-421d89850fca
script_args: git develop

Cloud Configurations

Scaleway

To use Salt Cloud with Scaleway, you need to get an access key and an API token. API tokens are unique
identifiers associated with your Scaleway account. To retrieve your access key and API token, log-in to the
Scaleway control panel, open the pull-down menu on your account name and click on **My Credentials" link.

If you do not have API token you can create one by clicking the **Create New Token" button on the right corner.

my-scaleway-config:
access_key: 15cf404d-4560-41b1-9a0c-21c3d5c4fflf
token: a7347ec8-5del-4024-a5e3-24b77d1ba91ld
driver: scaleway

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-scaleway-config.

Rackspace

Rackspace cloud requires two configuration options; a user and an apikey:

292 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

my-rackspace-config:

user: example_user
apikey: 123984bjjas87034
driver: rackspace

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-rackspace-config.

Amazon AWS

A number of configuration options are required for Amazon AWS including id, key, keyname, securitygroup,
and private_key:

my-aws-quick-start:

id: HIGRYCILJILKIYG

key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test

securitygroup: quick-start

private_key: /root/test.pem

driver: ec2

my-aws-default:

id: HIGRYCILJILKIYG

key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test

securitygroup: default

private_key: /root/test.pem

driver: ec2

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be either provider: my-aws-quick-startorprovider: my-aws-default.

Linode

Linode requires a single API key, but the default root password also needs to be set:

my-linode-config:

apikey: asldkgfakl;sdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf

password: FOObarbaz

ssh_pubkey: ssh-ed25519 AAAAC3NzaCllZDIINTE5AAAAIKHEOLLbeXgaqRQTIONBAopVz366SdYcOKKX33
ssh_key_file: ~/.ssh/id_ed25519

driver: linode

The password needs to be 8 characters and contain lowercase, uppercase, and numbers.

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-linode-config

25.5. Core Configuration 293

Ang+2R user@l

Salt Documentation, Release 2015.8.8

Joyent Cloud

The Joyent cloud requires three configuration parameters: The username and password that are used to log into the
Joyent system, as well as the location of the private SSH key associated with the Joyent account. The SSH key is
needed to send the provisioning commands up to the freshly created virtual machine.

my-joyent-config:
user: fred
password: saltybacon
private_key: /root/joyent.pem
driver: joyent

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-joyent-config

GoGrid

To use Salt Cloud with GoGrid, log into the GoGrid web interface and create an APIkey. Do this by clicking on **My
Account" and then going to the API Keys tab.

The apikey and the sharedsecret configuration parameters need to be set in the configuration file to enable
interfacing with GoGrid:

my-gogrid-config:
apikey: asdff7896asdh789
sharedsecret: saltybacon
driver: gogrid

Note: In the cloud profile that uses this provider configuration, the syntax for the prov-ider required field would
be provider: my-gogrid-config.

OpenStack

OpenStack configuration differs between providers, and at the moment several options need to be specified. This

module has been officially tested against the HP and the Rackspace implementations, and some examples are provided
for both.

For HP

my-openstack-hp-config:
identity_url:
'https://region-a.geo-1.1identity.hpcloudsvc.com:35357/v2.0/"'
compute_name: Compute
compute_region: 'az-l.region-a.geo-1'
tenant: myuser-tenantl
user: myuser
ssh_key_name: mykey
ssh_key_file: '/etc/salt/hpcloud/mykey.pem'
password: mypass
driver: openstack

For Rackspace
my-openstack-rackspace-config:
jdentity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'

294 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

compute_name: cloudServersOpenStack
protocol: -1ipv4

compute_region: DFW

protocol: ipv4

user: myuser

tenant: 5555555

password: mypass

driver: openstack

If you have an API key for your provider, it may be specified instead of a password:

my-openstack-hp-config:
apikey: 901d3f579h23c8v73q9

my-openstack-rackspace-config:
apikey: 901d3f579h23c8v73q9

Note: Inthe cloud profile that uses this provider configuration, the syntax for the provider required field would be
either provider: my-openstack-hp-configorprovider: my-openstack-rackspace-config.

You will certainly need to configure the user, tenant, and either password or apikey

If your OpenStack instances only have private IP addresses and a CIDR range of private addresses are not reachable
from the salt-master, you may set your preference to have Salt ignore it:

my-openstack-config:
ignore_cidr: 192.168.0.0/16

For in-house OpenStack Essex installation, libcloud needs the service_type :

my-openstack-config:
identity_url: 'http://control.openstack.example.org:5000/v2.0/"'
compute_name : Compute Service
service_type : compute

DigitalOcean

Using Salt for DigitalOcean requires a client_key and an api_key. These can be found in the DigitalOcean
web interface, in the **My Settings" section, under the API Access tab.

my-digitalocean-config:
driver: digital_ocean
personal_access_token: xxx
location: New York 1

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-digital-ocean-config

Parallels

Using Salt with Parallels requires a user, password and URL. These can be obtained from your cloud provider.

my-parallels-config:
user: myuser

25.5. Core Configuration 295

Salt Documentation, Release 2015.8.8

password: xyzzy
url: https://api.cloud.xmission.com:4465/paci/v1.0/
driver: parallels

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-parallels-config.

Proxmox

Using Salt with Proxmox requires a user, password, and URL. These can be obtained from your cloud host. Both
PAM and PVE users can be used.

my-proxmox-config:
driver: proxmox
user: saltcloud@pve
password: xyzzy
url: your.proxmox.host

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: my-proxmox-config.

LXC

The Ixc driver uses saltify to install salt and attach the Ixc container as a new Ixc minion. As soon as we can, we
manage baremetal operation over SSH. You can also destroy those containers via this driver.

devhost10-1xc:
target: devhostl0
driver: 1lxc

And in the map file:

devhost10-1xc:
provider: devhostl0-1xc
from_container: ubuntu
backing: 1lvm
sudo: True
size: 3g
ip: 10.0.3.9
minion:
master: 10.5.0.1
master_port: 4506
1xc_conf:
- 1xc.utsname: superlxc

Note: In the cloud profile that uses this provider configuration, the syntax for the provider required field would
be provider: devhostl0-1lxc.

296 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Saltify

The Saltify driver is a new, experimental driver designed to install Salt on a remote machine, virtual or bare metal,
using SSH. This driver is useful for provisioning machines which are already installed, but not Salted. For more
information about using this driver and for configuration examples, please see the Gettting Started with Saltify doc-
umentation.

Extending Profiles and Cloud Providers Configuration

As 0f 0.8.7, the option to extend both the profiles and cloud providers configuration and avoid duplication was added.
The extends feature works on the current profiles configuration, but, regarding the cloud providers configuration,
only works in the new syntax and respective configuration files, i.e. /etc/salt/salt/cloud.providersor
/etc/salt/cloud.providers.d/*.conf.

Note: Extending cloud profiles and providers is not recursive. For example, a profile that is extended by a second
profile is possible, but the second profile cannot be extended by a third profile.

Also, if a profile (or provider) is extending another profile and each contains a list of values, the lists from the
extending profile will override the list from the original profile. The lists are not merged together.

Extending Profiles

Some example usage on how to use extends with profiles. Consider /etc/salt/salt/cloud.profiles
containing:

development-instances:
provider: my-ec2-config
size: tl.micro
ssh_username: ec2_user
securitygroup:
- default
deploy: False

Amazon-Linux-AMI-2012.09-64bit:
image: ami-54cf5c3d
extends: development-instances

Fedora-17:
image: ami-08d97e61
extends: development-instances

Cent0S-5:
provider: my-aws-config
image: ami-09b61d60
extends: development-instances

The above configuration, once parsed would generate the following profiles data:

[{'deploy': False,
'image': 'ami-08d97e61',
'profile': 'Fedora-17',
'provider': 'my-ec2-config',
'securitygroup': ['default'],
'size': 'tl.micro',
'ssh_username': 'ec2_user'},

25.5. Core Configuration 297

Salt Documentation, Release 2015.8.8

{'deploy': False,
'image': 'ami-09b61d60',
'profile': 'Cent0S-5',
'provider': 'my-aws-config',
'securitygroup': ['default'],
'size': 'tl.micro',
'ssh_username': 'ec2_user'},
'deploy': False,
"image': 'ami-54cf5c3d’,
'profile': 'Amazon-Linux-AMI-2012.09-64b1it',
'provider': 'my-ec2-config',
'securitygroup': ['default'],
'size': 'tl.micro',
'ssh_username': 'ec2_user'},
{'deploy': False,
'profile': 'development-instances',
'provider': 'my-ec2-config',
'securitygroup': ['default'],
'size': 'tl.micro',
'ssh_username': 'ec2_user'}]

~

Pretty cool right?

Extending Providers

Some example usage on how to use extends within the cloud providers configuration. Consider
/etc/salt/salt/cloud.providers containing:

my-develop-envs:
- 1dd: HJIGRYCILJILKIYG
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test
securitygroup: quick-start
private_key: /root/test.pem
location: ap-southeast-1
availability_zone: ap-southeast-1b
driver: ec2

- user: myuser@mycorp.com
password: mypass
ssh_key_name: mykey
ssh_key_file: '/etc/salt/ibm/mykey.pem'
location: Raleigh
driver: dibmsce

my-productions-envs:

- extends: my-develop-envs:ibmsce
user: my-production-user@mycorp.com
location: us-east-1
availability_zone: us-east-1

The above configuration, once parsed would generate the following providers data:

'providers': {
'my-develop-envs': [
{'availability_zone': 'ap-southeast-1b',

298 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

'id': 'HIGRYCILJLKIYG',
'key': 'kdjgfsgmj;woormgl/aserigjksjdhasdfgn',
'keyname': 'test',
'location': 'ap-southeast-1',
'private_key': '/root/test.pem',
'driver': 'aws',
'securitygroup': 'quick-start'

b

{'location': 'Raleigh',
'password': 'mypass',
'driver': 'dibmsce',
'ssh_key_file': '/etc/salt/ibm/mykey.pem',
'ssh_key_name': 'mykey',
'user': 'myuser@mycorp.com'

}

1,
'my-productions-envs': [

{'availability_zone': 'us-east-1',
'location': 'us-east-1',
'password': 'mypass',
'driver': 'dibmsce',
'ssh_key_file': '/etc/salt/ibm/mykey.pem',
'ssh_key_name': 'mykey',
'user': 'my-production-user@mycorp.com'

}

25.6 Windows Configuration

25.6.1 Spinning up Windows Minions

It is possible to use Salt Cloud to spin up Windows instances, and then install Salt on them. This functionality is
available on all cloud providers that are supported by Salt Cloud. However, it may not necessarily be available on
all Windows images.

Requirements

Salt Cloud makes use of impacket and winexe to set up the Windows Salt Minion installer.

impacket is usually available as either the impacket or the python-impacket package, depending on the distribution.
More information on impacket can be found at the project home:

« impacket project home

winexe is less commonly available in distribution-specific repositories. However, it is currently being built for various
distributions in 3rd party channels:

« RPMs at pbone.net
« OpenSuse Build Service

Optionally WinRM can be used instead of winexe if the python module pywinrm is available and WinRM is supported
on the target Windows version. Information on pywinrm can be found at the project home:

« pywinrm project home

25.6. Windows Configuration 299

https://code.google.com/p/impacket/
http://rpm.pbone.net/index.php3?stat=3&search=winexe
http://software.opensuse.org/package/winexe
https://github.com/diyan/pywinrm

Salt Documentation, Release 2015.8.8

Additionally, a copy of the Salt Minion Windows installer must be present on the system on which Salt Cloud is
running. This installer may be downloaded from saltstack.com:

« SaltStack Download Area

Firewall Settings

Because Salt Cloud makes use of smbclient and winexe, port 445 must be open on the target image. This port is not
generally open by default on a standard Windows distribution, and care must be taken to use an image in which this
port is open, or the Windows firewall is disabled.

If supported by the cloud provider, a PowerShell script may be used to open up this port automatically, using the
cloud provider's userdata. The following script would open up port 445, and apply the changes:

<powershell>

New-NetFirewallRule -Name "SMB445" -DisplayName '"SMB445" -Protocol TCP -LocalPort 445
Set-Item (dir wsman:\localhost\Listener*\Port -Recurse).pspath 445 -Force
Restart-Service winrm

</powershell>

For EC2, this script may be saved as a file, and specified in the provider or profile configuration as userdata_file. For
instance:

userdata_file: /etc/salt/windows-firewall.psl ‘

If you are using WinRM on EC2 the HTTPS port for the WinRM service must also be enabled in your userdata. By
default EC2 Windows images only have insecure HTTP enabled. To enable HTTPS and basic authentication required
by pywinrm consider the following userdata example:

<powershell>
New-NetFirewallRule -Name "SMB445" -DisplayName '"SMB445" -Protocol TCP -LocalPort 445
New-NetFirewallRule -Name "WINRM5986'" -DisplayName "WINRM5986'" -Protocol TCP -LocalPort

winrm quickconfig -q

winrm set winrm/config/winrs '@{MaxMemoryPerShellMB="300"}"
winrm set winrm/config '@{MaxTimeoutms="1800000"}"

winrm set winrm/config/service/auth '@{Basic="true"}'

$SourceStoreScope = 'LocalMachine'
$SourceStorename = 'Remote Desktop'

$SourceStore = New-Object -TypeName System.Security.Cryptography.X509Certificates.X5099
$SourceStore.0Open(: :ReadOnly)

Scert = $SourceStore.Certificates | Where-Object -FilterScript {
$_.subject -like 'x'
}

$DestStoreScope = 'LocalMachine'
$DestStoreName = 'My'

SDestStore = New-Object -TypeName System.Security.Cryptography.X509Certificates.X509Stq
SDestStore.0pen(::ReadWrite)
SDestStore.Add(Scert)

SSourceStore.Close()
SDestStore.Close()

300 Chapter 25. Salt Cloud

5986

tore

re

-Argume

-Argumen’

https://repo.saltstack.com/windows/

Salt Documentation, Release 2015.8.8

winrm create winrm/config/listener?Address=x+Transport=HTTPS @ {Hostname=""(ScertId)"'

Restart-Service winrm
</powershell>

No certificate store is available by default on EC2 images and creating one does not seem possible without an MMC
(cannot be automated). To use the default EC2 Windows images the above copies the RDP store.

Configuration

Configuration is set as usual, with some extra configuration settings. The location of the Windows installer on the
machine that Salt Cloud is running on must be specified. This may be done in any of the regular configuration files
(main, providers, profiles, maps). For example:

Setting the installer in /etc/salt/cloud.providers:

my-softlayer:
driver: softlayer
user: MYUSER1138
apikey: 'e3b68aa7lle6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9!
minion:
master: saltmaster.example.com
win_installer: /root/Salt-Minion-2014.7.0-AMD64-Setup.exe
win_username: Administrator
win_password: letmein
smb_port: 445

The default Windows user is Administrator, and the default Windows password is blank.

If WinRM is to be used use_winrm needs to be set to True. winrm_port can be used to specify a custom port
(must be HTTPS listener).

Auto-Generated Passwords on EC2

On EC2, when the win_password is set to auto, Salt Cloud will query EC2 for an auto-generated password. This
password is expected to take at least 4 minutes to generate, adding additional time to the deploy process.

When the EC2 API is queried for the auto-generated password, it will be returned in a message encrypted with the
specified keyname. This requires that the appropriate private_key file is also specified. Such a profile configuration
might look like:

windows-server-2012:
provider: my-ec2-config
image: ami-c49c0@dac
size: ml.small
securitygroup: windows
keyname: mykey
private_key: /root/mykey.pem
userdata_file: /etc/salt/windows-firewall.psl
win_installer: /root/Salt-Minion-2014.7.0-AMD64-Setup.exe
win_username: Administrator
win_password: auto

25.6. Windows Configuration 301

“;Certificate

Salt Documentation, Release 2015.8.8

25.7 Cloud Provider Specifics

25.7.1 Getting Started With Aliyun ECS

The Aliyun ECS (Elastic Computer Service) is one of the most popular public cloud hosts in China. This cloud host
can be used to manage aliyun instance using salt-cloud.

http://www.aliyun.com/
Dependencies

This driver requires the Python requests library to be installed.

Configuration

Using Salt for Aliyun ECS requires aliyun access key id and key secret. These can be found in the aliyun web interface,
in the " "User Center" section, under " "My Service" tab.

Note: This example is for /etc/salt/cloud.providers or any file in the
Jetc/salt/cloud.providers.d/ directory.

my-aliyun-config:
aliyun Access Key ID
id: wDGEwGregedg3435gDgxd
aliyun Access Key Secret
key: GDd45t43RDBTrkkkg43934t34qT43t4dgegerGEgg
location: cn-qingdao
driver: aliyun

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use prov-ider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles orinthe /etc/salt/cloud.profiles.d/ di-
rectory:

aliyun_centos:
provider: my-aliyun-config
size: ecs.tl.small
location: cn-gingdao
securitygroup: G1989096784427999
image: centos6u3_64_20G_aliaegis_20130816.vhd

Sizes can be obtained using the ——11ist-sizes option for the salt-cloud command:

302 Chapter 25. Salt Cloud

http://www.aliyun.com/

Salt Documentation, Release 2015.8.8

salt-cloud --list-sizes my-aliyun-config
my-aliyun-config:

CpuCoreCount:

8
InstanceTypeld:

ecs.cl.large
MemorySize:

16.0

...SNIP...

Images can be obtained using the ——1ist-1images option for the salt-cloud command:

salt-cloud --list-images my-aliyun-config
my-aliyun-config:

Architecture:
x86_64
Description:

Imageld:
centos5u8_64_20G_aliaegis_20131231.vhd
ImageName:
Cent0S 5.8 64K
ImageOwnerAlias:
system
ImageVersion:
1.0
OSName:
Cent0S 5.8 64K
Platform:
CENTOS5
Size:
20
Visibility:
public
.. .SNIP...

Locations can be obtained using the —-1ist-locations option for the salt-cloud command:

my-aliyun-config:

LocalName:
(g
RegionId:
cn-beijing

25.7. Cloud Provider Specifics 303

Salt Documentation, Release 2015.8.8

cn-hangzhou:
LocalName:
XX
RegionId:
cn-hangzhou
cn-hongkong:
LocalName:
XX
RegionId:
cn-hongkong
cn-qgingdao:
LocalName:
XX
RegionId:
cn-qgingdao

Security Group can be obtained using the -f 1ist_securitygroup option for the salt-cloud command:

salt-cloud --location=cn-qingdao -f list_securitygroup my-aliyun-config
my-aliyun-config:

Description:
G1989096784427999

SecurityGroupId:
G1989096784427999

Note: Aliyun ECS REST API documentation is available from Aliyun ECS APL

25.7.2 Getting Started With Azure

New in version 2014.1.0.

Azure is a cloud service by Microsoft providing virtual machines, SQL services, media services, and more. This
document describes how to use Salt Cloud to create a virtual machine on Azure, with Salt installed.

More information about Azure is located at http://www.windowsazure.com/.

Dependencies

« The Azure Python SDK >= 0.10.2 and < 1.0.0

« The python-requests library, for Python < 2.7.9.
+ A Microsoft Azure account

« OpenSSL (to generate the certificates)

. Salt

Note: The Azure driver is currently being updated to work with the new version of the Python Azure SDK, 1.0.0.

304 Chapter 25. Salt Cloud

http://help.aliyun.com/list/11113464.html?spm=5176.7224429.1997282881.55.J9XhVL
http://www.windowsazure.com/
https://pypi.python.org/pypi/azure
https://github.com/saltstack/salt

Salt Documentation, Release 2015.8.8

However until that process is complete, this driver will not work with Azure 1.0.0. Please be sure you're running on
a minimum version of 0.10.2 and less than version 1.0.0.

See Issue #27980 for more information.

Configuration

Set up the provider config at /etc/salt/cloud.providers.d/azure.conf

Note: This example is for /etc/salt/cloud.providers.d/azure.conf

my-azure-config:
driver: azure
subscription_id: 3287abc8-f98a-c678-3bde-326766fd3617
certificate_path: /etc/salt/azure.pem

Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Optional
management_host: management.core.windows.net

The certificate used must be generated by the user. OpenSSL can be used to create the management certificates. Two
certificates are needed: a .cer file, which is uploaded to Azure, and a .pem file, which is stored locally.

To create the .pem file, execute the following command:

’openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout /etc/salt/azure.pem -out /e#c/salt/azure

To create the .cer file, execute the following command:

‘openssl x509 -inform pem -in /etc/salt/azure.pem -outform der -out /etc/salt/azure.cer ‘

After creating these files, the .cer file will need to be uploaded to Azure via the " Upload a Management Certificate"”
action of the " "Management Certificates” tab within the *"Settings" section of the management portal.

Optionally, a management_host may be configured, if necessary for the region.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use prov-ider to refer to provider configurations that you define.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

azure-ubuntu:
provider: my-azure-config
image: 'b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu-12_04_3-LTS-amd64-server-20131003-entus—-30GB'
size: Small
location: 'East US'

25.7. Cloud Provider Specifics 305

https://github.com/saltstack/salt/issues/27980

Salt Documentation, Release 2015.8.8

ssh_username: azureuser

ssh_password: verybadpass

slot: production

media_link: 'http://portalvhdabcdefghijklmn.blob.core.windows.net/vhds'
virtual_network_name: azure-virtual-network

subnet_name: azure-subnet

These options are described in more detail below. Once configured, the profile can be realized with a salt command:

salt-cloud -p azure-ubuntu newinstance

This will create an salt minion instance named newinstance in Azure. If the command was executed on the
salt-master, its Salt key will automatically be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt newinstance test.ping

Profile Options

The following options are currently available for Azure.

provider
The name of the provider as configured in /etc/salt/cloud.providers.d/azure.conf.
image

The name of the image to use to create a VM. Available images can be viewed using the following command:

salt-cloud --list-images my-azure-config

size

The name of the size to use to create a VM. Available sizes can be viewed using the following command:

salt-cloud --list-sizes my-azure-config

location

The name of the location to create a VM in. Available locations can be viewed using the following command:

salt-cloud --list-locations my-azure-config

affinity_group

The name of the affinity group to create a VM in. Either a location or an affinity_group may be specified,
but not both. See Affinity Groups below.

306 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

ssh_username

The user to use to log into the newly-created VM to install Salt.

ssh_password

The password to use to log into the newly-created VM to install Salt.

slot

The environment to which the hosted service is deployed. Valid values are staging or production. When set to
production, the resulting URL of the new VM will be <vm_name>.cloudapp.net. When set to staging, the resulting
URL will contain a generated hash instead.

media_link

This is the URL of the container that will store the disk that this VM uses. Currently, this container must already
exist. If a VM has previously been created in the associated account, a container should already exist. In the web
interface, go into the Storage area and click one of the available storage selections. Click the Containers link, and
then copy the URL from the container that will be used. It generally looks like:

http://portalvhdabcdefghijklmn.blob.core.windows.net/vhds

service_name

The name of the service in which to create the VM. If this is not specified, then a service will be created with the
same name as the VM.

virtual_network_name

Optional. The name of the virtual network for the VM to join. If this is not specified, then no virtual network will
be joined.

subnet_name

Optional. The name of the subnet in the virtual network for the VM to join. Requires that a vir-
tual_network_name is specified.

Show Instance

This action is a thin wrapper around —-full-query, which displays details on a single instance only. In an
environment with several machines, this will save a user from having to sort through all instance data, just to
examine a single instance.

salt-cloud -a show_instance myinstance

25.7. Cloud Provider Specifics 307

Salt Documentation, Release 2015.8.8

Destroying VMs

There are certain options which can be specified in the global cloud configuration file (usually /etc/salt/cloud)
which affect Salt Cloud's behavior when a VM is destroyed.

cleanup_disks

New in version 2015.8.0.

Default is False. When set to True, Salt Cloud will wait for the VM to be destroyed, then attempt to destroy the
main disk that is associated with the VM.

cleanup_vhds

New in version 2015.8.0.

Default is False. Requires cleanup_disks to be set to True. When also set to True, Salt Cloud will ask Azure
to delete the VHD associated with the disk that is also destroyed.

cleanup_services

New in version 2015.8.0.

Default is False. Requires cleanup_disks to be set to True. When also set to True, Salt Cloud will wait for
the disk to be destroyed, then attempt to remove the service that is associated with the VM. Because the disk belongs
to the service, the disk must be destroyed before the service can be.

Managing Hosted Services

New in version 2015.8.0.

An account can have one or more hosted services. A hosted service is required in order to create a VM. However, as
mentioned above, if a hosted service is not specified when a VM is created, then one will automatically be created
with the name of the name. The following functions are also available.

create_service

Create a hosted service. The following options are available.

name Required. The name of the hosted service to create.

label Required. A label to apply to the hosted service.

description Optional. A longer description of the hosted service.

location Required, if affinity_group is not set. The location in which to create the hosted service. Either the
location or the affinity_group must be set, but not both.

308 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

affinity_group Required, if Location is not set. The affinity group in which to create the hosted service. Either
the Location or the affinity_group must be set, but not both.

extended_properties Optional. Dictionary containing name/value pairs of hosted service properties. You can have
a maximum of 50 extended property name/value pairs. The maximum length of the Name element is 64 characters,
only alphanumeric characters and underscores are valid in the Name, and the name must start with a letter. The
value has a maximum length of 255 characters.

CLI Example The following example illustrates creating a hosted service.

salt-cloud -f create_service my-azure name=my-service label=my-service location="'West U$’

show_service

Return details about a specific hosted service. Can also be called with get_service.

salt-cloud -f show_storage my-azure name=my-service

list_services

List all hosted services associates with the subscription.

salt-cloud -f 1list_services my-azure-config

delete_service

Delete a specific hosted service.

salt-cloud -f delete_service my-azure name=my-service

Managing Storage Accounts

New in version 2015.8.0.

Salt Cloud can manage storage accounts associated with the account. The following functions are available. Depre-
cated marked as deprecated are marked as such as per the SDK documentation, but are still included for completeness
with the SDK.

create_storage

Create a storage account. The following options are supported.

name Required. The name of the storage account to create.

label Required. A label to apply to the storage account.

description Optional. A longer description of the storage account.

25.7. Cloud Provider Specifics 309

Salt Documentation, Release 2015.8.8

location Required, if affinity_group is not set. The location in which to create the storage account. Either
the Location or the affinity_group must be set, but not both.

affinity_group Required, if Llocation is not set. The affinity group in which to create the storage account. Either
the Location or the affinity_group must be set, but not both.

extended_properties Optional. Dictionary containing name/value pairs of storage account properties. You can
have a maximum of 50 extended property name/value pairs. The maximum length of the Name element is 64 char-
acters, only alphanumeric characters and underscores are valid in the Name, and the name must start with a letter.
The value has a maximum length of 255 characters.

geo_replication_enabled Deprecated. Replaced by the account_type parameter.

account_type Specifies whether the account supports locally-redundant storage, geo-redundant storage, zone-
redundant storage, or read access geo-redundant storage. Possible values are:

« Standard LRS
« Standard ZRS
. Standard GRS
« Standard RAGRS

CLI Example The following example illustrates creating a storage account.

salt-cloud -f create_storage my-azure name=my-storage label=my-storage location="'West Uﬁlr'

list_storage

List all storage accounts associates with the subscription.

salt-cloud -f list_storage my-azure-config

show_storage

Return details about a specific storage account. Can also be called with get_storage.

salt-cloud -f show_storage my-azure name=my-storage

update_storage

Update details concerning a storage account. Any of the options available in create_storage can be used, but
the name cannot be changed.

salt-cloud -f update_storage my-azure name=my-storage label=my-storage

310 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

delete_storage

Delete a specific storage account.

salt-cloud -f delete_storage my-azure name=my-storage

show_storage_keys

Returns the primary and secondary access keys for the specified storage account.

salt-cloud -f show_storage_keys my-azure name=my-storage

regenerate_storage_keys

Regenerate storage account keys. Requires a key_type (*"primary" or " “secondary") to be specified.

salt-cloud -f regenerate_storage_keys my-azure name=my-storage key_type=primary

Managing Disks

New in version 2015.8.0.

When a VM is created, a disk will also be created for it. The following functions are available for managing disks.
Deprecated marked as deprecated are marked as such as per the SDK documentation, but are still included for
completeness with the SDK.

show_disk

Return details about a specific disk. Can also be called with get_d1isk.

salt-cloud -f show_disk my-azure name=my-disk

list_disks

List all disks associates with the account.

salt-cloud -f list_disks my-azure

update_disk

Update details for a disk. The following options are available.

name Required. The name of the disk to update.

has_operating_system Deprecated.

label Required. The label for the disk.

25.7. Cloud Provider Specifics 311

Salt Documentation, Release 2015.8.8

media_link Deprecated. The location of the disk in the account, including the storage container that it is in. This
should not need to be changed.

new_name Deprecated. If renaming the disk, the new name.

os Deprecated.

CLI Example The following example illustrates updating a disk.

salt-cloud -f update_disk my-azure name=my-disk label=my-disk

delete_disk

Delete a specific disk.

salt-cloud -f delete_disk my-azure name=my-disk

Managing Service Certificates

New in version 2015.8.0.

Stored at the cloud service level, these certificates are used by your deployed services. For more information on
service certificates, see the following link:

« Manage Certificates

The following functions are available.

list_service_certificates

List service certificates associated with the account.

salt-cloud -f list_service_certificates my-azure

show_service_certificate

Show the data for a specific service certificate associated with the account. The name, thumbprint,
and thumbalgorithm can be obtained from list_service_certificates. Can also be called with
get_service_certificate.

salt-cloud -f show_service_certificate my-azure name=my_service_certificate \
thumbalgorithm=shal thumbprint=0123456789ABCDEF

add_service_certificate

Add a service certificate to the account. This requires that a certificate already exists, which is then added to the
account. For more information on creating the certificate itself, see:

« Create a Service Certificate for Azure

The following options are available.

312 Chapter 25. Salt Cloud

https://msdn.microsoft.com/en-us/library/azure/gg981929.aspx
https://msdn.microsoft.com/en-us/library/azure/gg432987.aspx

Salt Documentation, Release 2015.8.8

name Required. The name of the hosted service that the certificate will belong to.

data Required. The base-64 encoded form of the pfx file.

certificate_format Required. The service certificate format. The only supported value is pfx.

password The certificate password.

salt-cloud -f add_service_certificate my-azure name=my-cert \
data='...CERT_DATA...' certificate_format=pfx password=verybadpass

delete_service_certificate

Delete a service certificate from the account. The name, thumbprint, and thumbalgorithm can be obtained
from list_service_certificates.

salt-cloud -f delete_service_certificate my-azure \
name=my_service_certificate \
thumbalgorithm=shal thumbprint=0123456789ABCDEF

Managing Management Certificates

New in version 2015.8.0.

A Azure management certificate is an X.509 v3 certificate used to authenticate an agent, such as Visual Studio
Tools for Windows Azure or a client application that uses the Service Management API, acting on behalf of the
subscription owner to manage subscription resources. Azure management certificates are uploaded to Azure and
stored at the subscription level. The management certificate store can hold up to 100 certificates per subscription.
These certificates are used to authenticate your Windows Azure deployment.

For more information on management certificates, see the following link.
« Manage Certificates

The following functions are available.

list_management_certificates

List management certificates associated with the account.

salt-cloud -f list_management_certificates my-azure

show_management_certificate

Show the data for a specific management certificate associated with the account. The name, thumbprint,
and thumbalgorithm can be obtained from list_management_certificates. Can also be called with
get_management_certificate.

salt-cloud -f show_management_certificate my-azure name=my_management_certificate \
thumbalgorithm=shal thumbprint=0123456789ABCDEF

25.7. Cloud Provider Specifics 313

https://msdn.microsoft.com/en-us/library/azure/gg981929.aspx

Salt Documentation, Release 2015.8.8

add_management_certificate

Management certificates must have a key length of at least 2048 bits and should reside in the Personal certificate
store. When the certificate is installed on the client, it should contain the private key of the certificate. To upload
to the certificate to the Microsoft Azure Management Portal, you must export it as a .cer format file that does not
contain the private key. For more information on creating management certificates, see the following link:

« Create and Upload a Management Certificate for Azure

The following options are available.

public_key A base64 representation of the management certificate public key.

thumbprint The thumb print that uniquely identifies the management certificate.

data The certificate's raw data in base-64 encoded .cer format.

salt-cloud -f add_management_certificate my-azure public_key="...PUBKEY...' \
thumbprint=0123456789ABCDEF data="'...CERT_DATA...'

delete_management_certificate

Delete a management certificate from the account. The thumbprint can be obtained from
list_management_certificates.

salt-cloud -f delete_management_certificate my-azure thumbprint=0123456789ABCDEF

Virtual Network Management

New in version 2015.8.0.

The following are functions for managing virtual networks.

list_virtual_networks

List input endpoints associated with the deployment.

salt-cloud -f list_virtual_networks my-azure service=myservice deployment=mydeployment

Managing Input Endpoints

New in version 2015.8.0.

Input endpoints are used to manage port access for roles. Because endpoints cannot be managed by the Azure Python
SDK, Salt Cloud uses the API directly. With versions of Python before 2.7.9, the requests—python package needs
to be installed in order for this to work. Additionally, the following needs to be set in the master's configuration file:

requests_1lib: True

The following functions are available.

314 Chapter 25. Salt Cloud

https://msdn.microsoft.com/en-us/library/azure/gg551722.aspx

Salt Documentation, Release 2015.8.8

list_input_endpoints

List input endpoints associated with the deployment

salt-cloud -f list_input_endpoints my-azure service=myservice deployment=mydeployment

show_input_endpoint

Show an input endpoint associated with the deployment

salt-cloud -f show_input_endpoint my-azure service=myservice \
deployment=mydeployment name=SSH

add_input_endpoint

Add an input endpoint to the deployment. Please note that there may be a delay before the changes show up. The
following options are available.

service Required. The name of the hosted service which the VM belongs to.

deployment Required. The name of the deployment that the VM belongs to. If the VM was created with Salt Cloud,
the deployment name probably matches the VM name.

role Required. The name of the role that the VM belongs to. If the VM was created with Salt Cloud, the role name
probably matches the VM name.

name Required. The name of the input endpoint. This typically matches the port that the endpoint is set to. For
instance, port 22 would be called SSH.

port Required. The public (Internet-facing) port that is used for the endpoint.

local_port Optional. The private port on the VM itself that will be matched with the port. This is typically the
same as the port. If this value is not specified, it will be copied from port.

protocol Required. Either tcp or udp.

enable_direct_server_return Optional. If an internal load balancer exists in the account, it can be used with a
direct server return. The default value is False. Please see the following article for an explanation of this option.

« Load Balancing for Azure Infrastructure Services

timeout_for_tcp_idle_connection Optional. The default value is 4. Please see the following article for an expla-
nation of this option.

« Configurable Idle Timeout for Azure Load Balancer

25.7. Cloud Provider Specifics 315

http://azure.microsoft.com/en-us/documentation/articles/virtual-machines-load-balance/
http://azure.microsoft.com/blog/2014/08/14/new-configurable-idle-timeout-for-azure-load-balancer/

Salt Documentation, Release 2015.8.8

CLI Example The following example illustrates adding an input endpoint.

salt-cloud -f add_input_endpoint my-azure service=myservice \
deployment=mydeployment role=myrole name=HTTP local_port=80 \
port=80 protocol=tcp enable_direct_server_return=False \
timeout_for_tcp_idle_connection=4

update_input_endpoint

Updates the details for a specific input endpoint. All options from add_1input_endpoint are supported.

salt-cloud -f update_input_endpoint my-azure service=myservice \
deployment=mydeployment role=myrole name=HTTP local_port=80 \
port=80 protocol=tcp enable_direct_server_return=False \
timeout_for_tcp_idle_connection=4

delete_input_endpoint

Delete an input endpoint from the deployment. Please note that there may be a delay before the changes show up.
The following items are required.

CLI Example The following example illustrates deleting an input endpoint.

service The name of the hosted service which the VM belongs to.

deployment The name of the deployment that the VM belongs to. If the VM was created with Salt Cloud, the
deployment name probably matches the VM name.

role The name of the role that the VM belongs to. If the VM was created with Salt Cloud, the role name probably
matches the VM name.

name The name of the input endpoint. This typically matches the port that the endpoint is set to. For instance,
port 22 would be called SSH.

salt-cloud -f delete_input_endpoint my-azure service=myservice \
deployment=mydeployment role=myrole name=HTTP

Managing Affinity Groups

New in version 2015.8.0.

Affinity groups allow you to group your Azure services to optimize performance. All services and VMs within an
affinity group will be located in the same region. For more information on Affinity groups, see the following link:

« Create an Affinity Group in the Management Portal

The following functions are available.

316 Chapter 25. Salt Cloud

https://msdn.microsoft.com/en-us/library/azure/jj156209.aspx

Salt Documentation, Release 2015.8.8

list_affinity_groups

List input endpoints associated with the account

salt-cloud -f list_affinity_groups my-azure

show_affinity_group

Show an affinity group associated with the account

salt-cloud -f show_affinity_group my-azure service=myservice \
deployment=mydeployment name=SSH

create_affinity_group

Create a new affinity group. The following options are supported.

name Required. The name of the new affinity group.

location Required. The region in which the affinity group lives.

label Required. A label describing the new affinity group.

description Optional. A longer description of the affinity group.

salt-cloud -f create_affinity_group my-azure name=my_affinity_group \
label=my-affinity-group location="'West US'

update_affinity_group

Update an affinity group's properties

salt-cloud -f update_affinity_group my-azure name=my_group label=my_group

delete_affinity_group

Delete a specific affinity group associated with the account

salt-cloud -f delete_affinity_group my-azure name=my_affinity_group

Managing Blob Storage

New in version 2015.8.0.

Azure storage containers and their contents can be managed with Salt Cloud. This is not as elegant as using one of
the other available clients in Windows, but it benefits Linux and Unix users, as there are fewer options available on
those platforms.

25.7. Cloud Provider Specifics 317

Salt Documentation, Release 2015.8.8

Blob Storage Configuration

Blob storage must be configured differently than the standard Azure configuration. Both a storage_account
and a storage_key must be specified either through the Azure provider configuration (in addition to the other
Azure configuration) or via the command line.

storage_account: mystorage
storage_key: ffhj334fDSGFEGDFGFDewr34fwfsFSDFwe==

storage_account This is one of the storage accounts that is available via the 1ist_storage function.

storage_key Both a primary and a secondary storage_key can be obtained by running the
show_storage_keys function. Either key may be used.

Blob Functions

The following functions are made available through Salt Cloud for managing blog storage.

make_blob_url Creates the URL to access a blob

salt-cloud -f make_blob_url my-azure container=mycontainer blob=myblob

container Name of the container.

blob Name of the blob.

account Name of the storage account. If not specified, derives the host base from the provider configuration.

protocol Protocol to use: “http' or “https". If not specified, derives the host base from the provider configuration.

host_base Live host base URL. If not specified, derives the host base from the provider configuration.

list_storage_containers List containers associated with the storage account

’salt—cloud -f list_storage_containers my-azure

create_storage_container Create a storage container

’salt—cloud -f create_storage_container my-azure name=mycontainer

name Name of container to create.

meta_name_values Optional. A dict with name_value pairs to associate with the container as metadata. Exam-
ple:{" Category':'test'}

318 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

blob_public_access Optional. Possible values include: container, blob

fail_on_exist Specify whether to throw an exception when the container exists.

show_storage_container Show a container associated with the storage account

salt-cloud -f show_storage_container my-azure name=myservice

name Name of container to show.

show_storage_container_metadata Show a storage container's metadata

salt-cloud -f show_storage_container_metadata my-azure name=myservice

name Name of container to show.

lease_id If specified, show_storage_container_metadata only succeeds if the container's lease is active and matches
this ID.

set_storage_container_metadata Set a storage container's metadata

salt-cloud -f set_storage_container my-azure name=mycontainer \
x_ms_meta_name_values='{"my_name": "my_value"}'

D I N RN

name Name of existing container. meta_name_values A dict containing name, value for meta-
data. Example: { category''test’} lease_id ~ " " If specified, set_storage_container_metadata only succeeds if the
container's lease is active and matches this ID.

show_storage_container_acl Show a storage container's acl

salt-cloud -f show_storage_container_acl my-azure name=myservice

name Name of existing container.

lease_id If specified, show_storage_container_acl only succeeds if the container's lease is active and matches this
ID.

set_storage_container_acl Set a storage container's acl

salt-cloud -f set_storage_container my-azure name=mycontainer

name Name of existing container.

signed_identifiers SignedIdentifers instance

25.7. Cloud Provider Specifics 319

Salt Documentation, Release 2015.8.8

blob_public_access Optional. Possible values include: container, blob

lease_id If specified, set_storage_container_acl only succeeds if the container's lease is active and matches this ID.

delete_storage_container Delete a container associated with the storage account

salt-cloud -f delete_storage_container my-azure name=mycontainer

name Name of container to create.

fail_not_exist Specify whether to throw an exception when the container exists.

lease_id If specified, delete_storage_container only succeeds if the container's lease is active and matches this ID.

lease_storage_container Lease a container associated with the storage account

salt-cloud -f lease_storage_container my-azure name=mycontainer

name Name of container to create.

lease_action Required. Possible values: acquire|renew|release|break|change

lease_id Required if the container has an active lease.

lease_duration Specifies the duration of the lease, in seconds, or negative one (-1) for a lease that never expires.
A non-infinite lease can be between 15 and 60 seconds. A lease duration cannot be changed using renew or change.
For backwards compatibility, the default is 60, and the value is only used on an acquire operation.

lease_break_period Optional. For a break operation, this is the proposed duration of seconds that the lease should
continue before it is broken, between 0 and 60 seconds. This break period is only used if it is shorter than the time
remaining on the lease. If longer, the time remaining on the lease is used. A new lease will not be available before
the break period has expired, but the lease may be held for longer than the break period. If this header does not
appear with a break operation, a fixed-duration lease breaks after the remaining lease period elapses, and an infinite
lease breaks immediately.

proposed_lease_id Optional for acquire, required for change. Proposed lease ID, in a GUID string format.

list_blobs List blobs associated with the container

salt-cloud -f list_blobs my-azure container=mycontainer

container The name of the storage container

prefix Optional. Filters the results to return only blobs whose names begin with the specified prefix.

320 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

marker Optional. A string value that identifies the portion of the list to be returned with the next list operation.
The operation returns a marker value within the response body if the list returned was not complete. The marker
value may then be used in a subsequent call to request the next set of list items. The marker value is opaque to the
client.

maxresults Optional. Specifies the maximum number of blobs to return, including all BlobPrefix elements. If the
request does not specify maxresults or specifies a value greater than 5,000, the server will return up to 5,000 items.
Setting maxresults to a value less than or equal to zero results in error response code 400 (Bad Request).

include Optional. Specifies one or more datasets to include in the response. To specify more than one of these
options on the URIL, you must separate each option with a comma. Valid values are:

snapshots:
Specifies that snapshots should be [included in the
enumeration. Snapshots are listed from oldest to newest 1in
the response.

metadata:
Specifies that blob metadata be returned in the response.

uncommittedblobs:
Specifies that blobs for which blocks have been uploaded,
but which have not been committed using Put Block List
(REST API), be 1dincluded in the response.

copy:
Version 2012-02-12 and newer. Specifies that metadata
related to any current or previous Copy Blob operation
should be included in the response.

delimiter Optional. When the request includes this parameter, the operation returns a BlobPrefix element in the
response body that acts as a placeholder for all blobs whose names begin with the same substring up to the appearance
of the delimiter character. The delimiter may be a single character or a string.

show_blob_service_properties Show a blob's service properties

salt-cloud -f show_blob_service_properties my-azure

set_blob_service_properties Sets the properties of a storage account's Blob service, including Windows Azure
Storage Analytics. You can also use this operation to set the default request version for all incoming requests that
do not have a version specified.

salt-cloud -f set_blob_service_properties my-azure

properties a StorageServiceProperties object.

timeout Optional. The timeout parameter is expressed in seconds.

show_blob_properties Returns all user-defined metadata, standard HTTP properties, and system properties for
the blob.

salt-cloud -f show_blob_properties my-azure container=mycontainer blob=myblob

25.7. Cloud Provider Specifics 321

Salt Documentation, Release 2015.8.8

container Name of existing container.

blob Name of existing blob.

lease_id Required if the blob has an active lease.

set_blob_properties Set a blob's properties

salt-cloud -f set_blob_properties my-azure

container Name of existing container.

blob Name of existing blob.

blob_cache_control Optional. Modifies the cache control string for the blob.

blob_content_type Optional. Sets the blob's content type.

blob_content_md5 Optional. Sets the blob's MD5 hash.

blob_content_encoding Optional. Sets the blob's content encoding.

blob_content_language Optional. Sets the blob's content language.

lease_id Required if the blob has an active lease.

blob_content_disposition Optional. Sets the blob's Content-Disposition header. The Content-Disposition re-
sponse header field conveys additional information about how to process the response payload, and also can be
used to attach additional metadata. For example, if set to attachment, it indicates that the user-agent should not
display the response, but instead show a Save As dialog with a filename other than the blob name specified.

put_blob Upload a blob

salt-cloud -f put_blob my-azure container=base name=top.sls blob_path=/srv/salt/top.sls
salt-cloud -f put_blob my-azure container=base name=content.txt blob_content='Some conte¢nt'

container Name of existing container.

name Name of existing blob.

blob_path The path on the local machine of the file to upload as a blob. Either this or blob_content must be
specified.

322 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

blob_content The actual content to be uploaded as a blob. Either this or blob_path must me specified.

cache_control Optional. The Blob service stores this value but does not use or modify it.

content_language Optional. Specifies the natural languages used by this resource.

content_md5 Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob
during transport. When this header is specified, the storage service checks the hash that has arrived with the one
that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request).

blob_content_type Optional. Set the blob's content type.

blob_content_encoding Optional. Set the blob's content encoding.

blob_content_language Optional. Set the blob's content language.

blob_content_md5 Optional. Set the blob's MD5 hash.

blob_cache_control Optional. Sets the blob's cache control.

meta_name_values A dict containing name, value for metadata.

lease_id Required if the blob has an active lease.

get_blob Download a blob

salt-cloud -f get_blob my-azure container=base name=top.sls local_path=/srv/salt/top.sls
salt-cloud -f get_blob my-azure container=base name=content.txt return_content=True

container Name of existing container.

name Name of existing blob.

local_path The path on the local machine to download the blob to. Either this or return_content must be specified.

return_content Whether or not to return the content directly from the blob. If specified, must be True or False.
Either this or the local_path must be specified.

snapshot Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob
snapshot to retrieve.

lease_id Required if the blob has an active lease.

25.7. Cloud Provider Specifics 323

Salt Documentation, Release 2015.8.8

progress_callback callback for progress with signature function(current, total) where current is the number of
bytes transferred so far, and total is the size of the blob.

max_connections Maximum number of parallel connections to use when the blob size exceeds 64MB. Set to 1 to
download the blob chunks sequentially. Set to 2 or more to download the blob chunks in parallel. This uses more
system resources but will download faster.

max_retries Number of times to retry download of blob chunk if an error occurs.

retry_wait Sleep time in secs between retries.

25.7.3 Getting Started With DigitalOcean

DigitalOcean is a public cloud host that specializes in Linux instances.

Configuration

Using Salt for DigitalOcean requires a personal_access_token, an ssh_key_f1ile, and at least one SSH
key name in ssh_key_names. More ssh_key_names can be added by separating each key with a comma. The
personal_access_token can be found in the DigitalOcean web interface in the **Apps & API" section. The
SSH key name can be found under the *SSH Keys" section.

Note: This example is for /etc/salt/cloud.providers or any file in the
/Jetc/salt/cloud.providers.d/ directory.

my-digitalocean-config:
driver: digital_ocean
personal_access_token: xxx
ssh_key_file: /path/to/ssh/key/file
ssh_key_names: my-key-name,my-key-name-2
location: New York 1

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles orinthe /etc/salt/cloud.profiles.d/ di-
rectory:

digitalocean-ubuntu:
provider: my-digitalocean-config
image: 14.04 x64
size: 512MB

324 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

location: New York 1
private_networking: True
backups_enabled: True
ipv6e: True

Locations can be obtained using the —-1ist-locations option for the salt-cloud command:

salt-cloud --list-locations my-digitalocean-config
my-digitalocean-config:

available:
False
features:
[u'backups']
name:
Amsterdam 1
sizes:
[]
slug:
ams1l
...SNIP...

Sizes can be obtained using the ——1ist-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-digitalocean-config
my-digitalocean-config:

cost_per_hour:
0.00744
cost_per_month:
5.0
cpu:
1
disk:
20
id:
66
memory:
512
name:
512MB
slug:
None
...SNIP...

Images can be obtained using the -—1ist-images option for the salt-cloud command:

salt-cloud --list-images my-digitalocean-config
my-digitalocean-config:

digital_ocean:

25.7. Cloud Provider Specifics 325

Salt Documentation, Release 2015.8.8

created_at:
2015-01-20T20:04:34Z
distribution:

FreeBSD
qid:
10144573
min_disk_size:
20
name:
10.1
public:
True
...SNIP...
Profile Specifics:

ssh_username If using a FreeBSD image from Digital Ocean, you'll need to set the ssh_username setting to
freebsd in your profile configuration.

digitalocean-freebsd:
provider: my-digitalocean-config
image: 10.2
size: 512MB
ssh_username: freebsd

Miscellaneous Information

Note: DigitalOcean's concept of Applications is nothing more than a pre-configured instance (same as a normal
Droplet). You will find examples such Docker 0.7 Ubuntu 13.04 x64 andWordpress on Ubuntu 12.10

when using the ——1ist-images option. These names can be used just like the rest of the standard instances when
specifying an image in the cloud profile configuration.

Note: If your domain's DNS is managed with DigitalOcean, you can automatically create A-records for newly created
droplets. Use create_dns_record: Trueinyour config to enable this. Adddelete_dns_record: True

to also delete records when a droplet is destroyed.

Note: Additional documentation is available from DigitalOcean.

25.7.4 Getting Started With AWS EC2

Amazon EC2 is a very widely used public cloud platform and one of the core platforms Salt Cloud has been built to
support.

Previously, the suggested driver for AWS EC2 was the aws driver. This has been deprecated in favor of the ec2
driver. Configuration using the old aws driver will still function, but that driver is no longer in active development.

326 Chapter 25. Salt Cloud

https://www.digitalocean.com/community/articles/automated-provisioning-of-digitalocean-cloud-servers-with-salt-cloud-on-ubuntu-12-04

Salt Documentation, Release 2015.8.8

Dependencies

This driver requires the Python requests library to be installed.

Configuration

The following example illustrates some of the options that can be set. These parameters are discussed in more detail
below.

Note: This example is for /etc/salt/cloud.providers or any file in the
Jetc/salt/cloud.providers.d/ directory.

my-ec2-southeast-public-ips:
Set up the location of the salt master
#
minion:
master: saltmaster.example.com

Set up grains information, which will be common for all nodes
using this provider
grains:

node_type: broker

release: 1.0.1

Specify whether to use public or private IP for deploy script.

#

Valid options are:

private_ips - The salt-cloud command is run inside the EC2
public_ips - The salt-cloud command is run outside of EC2
#

ssh_interface: public_ips

Optionally configure the Windows credential validation number of
retries and delay between retries. This defaults to 10 retries
with a one second delay betwee retries

win_deploy_auth_retries: 10

win_deploy_auth_retry_delay: 1

Set the EC2 access credentials (see below)
#

id: 'use-instance-role-credentials'

key: 'use-instance-role-credentials'

Make sure this key is owned by root with permissions 0400.
#

private_key: /etc/salt/my_test_key.pem

keyname: my_test_key

securitygroup: default

Optionally configure default region

Use salt-cloud --list-locations <provider> to obtain valid regions
#

location: ap-southeast-1

availability_zone: ap-southeast-1b

Configure which user to use to run the deploy script. This setting is
dependent upon the AMI that is used to deploy. It is usually safer to

25.7. Cloud Provider Specifics 327

Salt Documentation, Release 2015.8.8

configure this individually in a profile, than globally. Typical users
are:

#

Amazon Linux -> ec2-user

RHEL -> ec2-user

CentOS -> ec2-user

Ubuntu -> ubuntu

#

ssh_username: ec2-user

Optionally add an IAM profile
jam_profile: 'arn:aws:iam::123456789012:1instance-profile/ExampleInstanceProfile’

driver: ec2

my-ec2-southeast-private-ips:
Set up the location of the salt master
#
minion:
master: saltmaster.example.com

Specify whether to use public or private IP for deploy script.

#

Valid options are:

private_ips - The salt-master is also hosted with EC2
public_ips - The salt-master is hosted outside of EC2
#

ssh_interface: private_ips

Optionally configure the Windows credential validation number of
retries and delay between retries. This defaults to 10 retries
with a one second delay betwee retries

win_deploy_auth_retries: 10

win_deploy_auth_retry_delay: 1

Set the EC2 access credentials (see below)
#

id: 'use-instance-role-credentials'

key: 'use-instance-role-credentials'

Make sure this key is owned by root with permissions 0400.
#

private_key: /etc/salt/my_test_key.pem

keyname: my_test_key

This one should NOT be specified if VPC was not configured in AWS to be
the default. It might cause an error message which says that network

interfaces and an instance-level security groups may not be specified

on the same request.

#

securitygroup: default

Optionally configure default region
#

location: ap-southeast-1
availability_zone: ap-southeast-1b

328 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Configure which user to use to run the deploy script. This setting is
dependent upon the AMI that is used to deploy. It is usually safer to
configure this individually in a profile, than globally. Typical users
are:

#

Amazon Linux -> ec2-user

RHEL -> ec2-user

Cent0S -> ec2-user

Ubuntu -> ubuntu

#

ssh_username: ec2-user

Optionally add an IAM profile
jam_profile: 'my other profile name'

driver: ec2

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Access Credentials

The id and key settings may be found in the Security Credentials area of the AWS Account page:
https://portal.aws.amazon.com/gp/aws/securityCredentials

Both are located in the Access Credentials area of the page, under the Access Keys tab. The id setting is labeled
Access Key ID, and the key setting is labeled Secret Access Key.

Note: if either id or key is set to “use-instance-role-credentials' it is assumed that Salt is running on an AWS
instance, and the instance role credentials will be retrieved and used. Since both the id and key are required
parameters for the AWS ec2 provider, it is recommended to set both to "use-instance-role-credentials' for this func-
tionality.

A “static" and " “permanent” Access Key ID and Secret Key can be specified, but this is not recommended. Instance
role keys are rotated on a regular basis, and are the recommended method of specifying AWS credentials.

Windows Deploy Timeouts

For Windows instances, it may take longer than normal for the instance to be ready. In these cir-
cumstances, the provider configuration can be configured with a win_deploy_auth_retries and/or a
win_deploy_auth_retry_delay setting, which default to 10 retries and a one second delay between retries.
These retries and timeouts relate to validating the Administrator password once AWS provides the credentials via
the AWS APL

Key Pairs

In order to create an instance with Salt installed and configured, a key pair will need to be created. This can be done
in the EC2 Management Console, in the Key Pairs area. These key pairs are unique to a specific region. Keys in the
us-east-1 region can be configured at:

25.7. Cloud Provider Specifics 329

https://portal.aws.amazon.com/gp/aws/securityCredentials

Salt Documentation, Release 2015.8.8

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=KeyPairs
Keys in the us-west-1 region can be configured at

https://console.aws.amazon.com/ec2/home?region=us-west-1#s=KeyPairs

...and so on. When creating a key pair, the browser will prompt to download a pem file. This file must be placed in

a directory accessible by Salt Cloud, with permissions set to either 0400 or 0600.

Security Groups

An instance on EC2 needs to belong to a security group. Like key pairs, these are unique to a specific region. These
are also configured in the EC2 Management Console. Security groups for the us-east-1 region can be configured at:

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups

...and so on.

A security group defines firewall rules which an instance will adhere to. If the salt-master is configured outside of

EC2, the security group must open the SSH port (usually port 22) in order for Salt Cloud to install Salt.

IAM Profile

Amazon EC2 instances support the concept of an instance profile, which is a logical container for the IAM role.
At the time that you launch an EC2 instance, you can associate the instance with an instance profile, which in turn
corresponds to the IAM role. Any software that runs on the EC2 instance is able to access AWS using the permissions

associated with the IAM role.
Scaffolding the profile is a 2-step configuration process:
1. Configure an IAM Role from the IAM Management Console.
2. Attach this role to a new profile. It can be done with the AWS CLI:

> aws iam create-instance-profile --instance-profile-name PROFILE_NAME

> aws iam add-role-to-instance-profile --instance-profile-name PROFILE_NAME --r

Once the profile is created, you can use the PROFILE_NAME to configure your cloud profiles.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles

base_ec2_private:
provider: my-ec2-southeast-private-ips
image: ami-e565ba8c
size: t2.micro
ssh_username: ec2-user

base_ec2_public:
provider: my-ec2-southeast-public-ips
image: ami-e565ba8c
size: t2.micro
ssh_username: ec2-user

base_ec2_db:
provider: my-ec2-southeast-public-ips
image: ami-e565ba8c

330 Chapter 25. Salt Cloud

ole-name ROLE

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=KeyPairs
https://console.aws.amazon.com/ec2/home?region=us-west-1#s=KeyPairs
https://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups
http://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html
https://console.aws.amazon.com/iam/home?#roles
http://docs.aws.amazon.com/cli/latest/index.html

Salt Documentation, Release 2015.8.8

size: ml.xlarge

ssh_username: ec2-user

volumes:
- { size: 10, device: /dev/sdf }
- { size: 10, device: /dev/sdg, type: iol, iops: 1000 }
- { size: 10, device: /dev/sdh, type: iol, iops: 1000 }
- { size: 10, device: /dev/sdi, tags: {"Environment": "production"} }

optionally add tags to profile:

tag: {'Environment': 'production', 'Role': 'database'}

force grains to sync after install

sync_after_install: grains

base_ec2_vpc:
provider: my-ec2-southeast-public-ips
image: ami-a73264ce
size: ml.xlarge
ssh_username: ec2-user
script: /etc/salt/cloud.deploy.d/user_data.sh
network_interfaces:
- DevicelIndex: 0
PrivateIpAddresses:
- Primary: True
#auto assign public ip (not EIP)
AssociatePublicIpAddress: True
SubnetId: subnet-813d4bbf
SecurityGroupId:
- sg-750af413
del_root_vol_on_destroy: True
del_all_vol_on_destroy: True
volumes:
- { size: 10, device: /dev/sdf }
- { size: 10, device: /dev/sdg, type: iol, iops: 1000 }
- { size: 10, device: /dev/sdh, type: 1iol, dops: 1000 }
tag: {'Environment': 'production', 'Role': 'database'}
sync_after_install: grains

The profile can now be realized with a salt command:

salt-cloud -p base_ec2 ami.example.com
salt-cloud -p base_ec2_public ami.example.com
salt-cloud -p base_ec2_private ami.example.com

This will create an instance named ami .example.com in EC2. The minion that is installed on this instance will
have an id of ami .example. com. If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt 'ami.example.com' test.ping

Required Settings

The following settings are always required for EC2:

Set the EC2 login data
my-ec2-config:
id: HIGRYCILJLKIYG

25.7. Cloud Provider Specifics 331

Salt Documentation, Release 2015.8.8

key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
keyname: test

securitygroup: quick-start

private_key: /root/test.pem

driver: ec2

Optional Settings

EC2 allows a userdata file to be passed to the instance to be created. This functionality was added to Salt in the
2015.5.0 release.

my-ec2-config:
Pass userdata to the instance to be created
userdata_file: /etc/salt/my-userdata-file

EC2 allows a location to be set for servers to be deployed in. Availability zones exist inside regions, and may be
added to increase specificity.

my-ec2-config:
Optionally configure default region
location: ap-southeast-1
availability_zone: ap-southeast-1b

EC2 instances can have a public or private IP, or both. When an instance is deployed, Salt Cloud needs to log into
it via SSH to run the deploy script. By default, the public IP will be used for this. If the salt-cloud command is run
from another EC2 instance, the private IP should be used.

my-ec2-config:
Specify whether to use public or private IP for deploy script
private_1ips or public_1ips
ssh_interface: public_dips

Many EC2 instances do not allow remote access to the root user by default. Instead, another user must be used to run
the deploy script using sudo. Some common usernames include ec2-user (for Amazon Linux), ubuntu (for Ubuntu
instances), admin (official Debian) and bitnami (for images provided by Bitnami).

my-ec2-config:
Configure which user to use to run the deploy script
ssh_username: ec2-user

Multiple usernames can be provided, in which case Salt Cloud will attempt to guess the correct username. This is
mostly useful in the main configuration file:

my-ec2-config:
ssh_username:
- ec2-user
- ubuntu
- admin
- bitnami

Multiple security groups can also be specified in the same fashion:

my-ec2-config:
securitygroup:
- default
- extra

332 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Your instances may optionally make use of EC2 Spot Instances. The following example will request that spot in-
stances be used and your maximum bid will be $0.10. Keep in mind that different spot prices may be needed based
on the current value of the various EC2 instance sizes. You can check current and past spot instance pricing via the
EC2 API or AWS Console.

my-ec2-config:
spot_config:
spot_price: 0.10

By default, the spot instance type is set to “one-time', meaning it will be launched and, if it's ever terminated for
whatever reason, it will not be recreated. If you would like your spot instances to be relaunched after a termination
(by your or AWS), set the type to "persistent’.

NOTE: Spot instances are a great way to save a bit of money, but you do run the risk of losing your spot instances if
the current price for the instance size goes above your maximum bid.

The following parameters may be set in the cloud configuration file to control various aspects of the spot instance
launching:

« wait_for_spot_timeout: seconds to wait before giving up on spot instance launch (default=600)

- wait_for_spot_interval: seconds to wait in between polling requests to determine if a spot instance
is available (default=30)

- wait_for_spot_interval_multiplier: a multiplier to add to the interval in between requests,
which is useful if AWS is throttling your requests (default=1)

- wait_for_spot_max_failures: maximum number of failures before giving up on launching your spot
instance (default=10)

If you find that you're being throttled by AWS while polling for spot instances, you can set the following in your
core cloud configuration file that will double the polling interval after each request to AWS.

wait_for_spot_interval: 1
wait_for_spot_interval_multiplier: 2

See the AWS Spot Instances documentation for more information.

Block device mappings enable you to specify additional EBS volumes or instance store volumes when the instance
is launched. This setting is also available on each cloud profile. Note that the number of instance stores varies by
instance type. If more mappings are provided than are supported by the instance type, mappings will be created in
the order provided and additional mappings will be ignored. Consult the AWS documentation for a listing of the
available instance stores, and device names.

my-ec2-config:
block_device_mappings:
- DeviceName: /dev/sdb
VirtualName: ephemeral®
- DeviceName: /dev/sdc
VirtualName: ephemerall

You can also use block device mappings to change the size of the root device at the provisioning time. For example,
assuming the root device is */dev/sda’, you can set its size to 100G by using the following configuration.

my-ec2-config:
block_device_mappings:

- DeviceName: /dev/sda
Ebs.VolumeSize: 100
Ebs.VolumeType: gp2
Ebs.SnapshotId: dummy®

- DeviceName: /dev/sdb

25.7. Cloud Provider Specifics 333

http://aws.amazon.com/ec2/purchasing-options/spot-instances/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Salt Documentation, Release 2015.8.8

required for devices > 2TB
Ebs.VolumeType: gp2
Ebs.VolumeSize: 3001

Existing EBS volumes may also be attached (not created) to your instances or you can create new EBS volumes based
on EBS snapshots. To simply attach an existing volume use the volume_1id parameter.

device: /dev/xvdj
volume_id: vol-12345abcd

Or, to create a volume from an EBS snapshot, use the snapshot parameter.

device: /dev/xvdj
snapshot: snap-abcdl12345

Note that volume_1id will take precedence over the snapshot parameter.

Tags can be set once an instance has been launched.

my-ec2-config:
tag:
tagd: value
tagl: value

Modify EC2 Tags

One of the features of EC2 is the ability to tag resources. In fact, under the hood, the names given to EC2 instances
by salt-cloud are actually just stored as a tag called Name. Salt Cloud has the ability to manage these tags:

salt-cloud -a get_tags mymachine
salt-cloud -a set_tags mymachine tagl=somestuff tag2='Other stuff'
salt-cloud -a del_tags mymachine tagl,tag2,tag3

It is possible to manage tags on any resource in EC2 with a Resource ID, not just instances:

salt-cloud -f get_tags my_ec2 resource_id=af5467ba
salt-cloud -f set_tags my_ec2 resource_id=af5467ba tagl=somestuff
salt-cloud -f del_tags my_ec2 resource_id=af5467ba tagl,tag2,tag3

Rename EC2 Instances

As mentioned above, EC2 instances are named via a tag. However, renaming an instance by renaming its tag will
cause the salt keys to mismatch. A rename function exists which renames both the instance, and the salt keys.

salt-cloud -a rename mymachine newname=yourmachine

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific instance. An instance with this
protection enabled cannot be destroyed.

salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

334 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Rename on Destroy

When instances on EC2 are destroyed, there will be a lag between the time that the action is sent, and the time that
Amazon cleans up the instance. During this time, the instance still retails a Name tag, which will cause a collision
if the creation of an instance with the same name is attempted before the cleanup occurs. In order to avoid such
collisions, Salt Cloud can be configured to rename instances when they are destroyed. The new name will look
something like:

myinstance-DEL20f5b8ad4eb64ed88f2c428df80aladc

In order to enable this, add rename_on_destroy line to the main configuration file:

my-ec2-config:
rename_on_destroy: True

Listing Images

Normally, images can be queried on a cloud provider by passing the ——1ist-images argument to Salt Cloud. This
still holds true for EC2:

salt-cloud --list-images my-ec2-config

However, the full list of images on EC2 is extremely large, and querying all of the available images may cause Salt
Cloud to behave as if frozen. Therefore, the default behavior of this option may be modified, by adding an owner
argument to the provider configuration:

owner: aws-marketplace

The possible values for this setting are amazon, aws—-marketplace, self, <AWS account ID> or all. The
default setting is amazon. Take note that all and aws-marketplace may cause Salt Cloud to appear as if it is
freezing, as it tries to handle the large amount of data.

It is also possible to perform this query using different settings without modifying the configuration files. To do this,
call the avail_images function directly:

salt-cloud -f avail_images my-ec2-config owner=aws-marketplace

EC2 Images

The following are lists of available AMI images, generally sorted by OS. These lists are on 3rd-party websites, are not
managed by Salt Stack in any way. They are provided here as a reference for those who are interested, and contain
no warranty (express or implied) from anyone affiliated with Salt Stack. Most of them have never been used, much
less tested, by the Salt Stack team.

« Arch Linux
« FreeBSD
 Fedora

« CentOS

« Ubuntu

« Debian

« OmniOS

« All Images on Amazon

25.7. Cloud Provider Specifics 335

https://wiki.archlinux.org/index.php/Arch_Linux_AMIs_for_Amazon_Web_Services
http://www.daemonology.net/freebsd-on-ec2/
https://fedoraproject.org/wiki/Cloud_images
http://wiki.centos.org/Cloud/AWS
http://cloud-images.ubuntu.com/locator/ec2/
https://wiki.debian.org/Cloud/AmazonEC2Image
http://omnios.omniti.com/wiki.php/Installation#IntheCloud
https://aws.amazon.com/marketplace

Salt Documentation, Release 2015.8.8

show_image

This is a function that describes an AMI on EC2. This will give insight as to the defaults that will be applied to an
instance using a particular AMIL

$ salt-cloud -f show_image ec2 image=ami-fd20ad9o4

show_instance

This action is a thin wrapper around ——full-query, which displays details on a single instance only. In an
environment with several machines, this will save a user from having to sort through all instance data, just to
examine a single instance.

$ salt-cloud -a show_instance myinstance

ebs_optimized

This argument enables switching of the EbsOptimized setting which default to “false'. Indicates whether the instance
is optimized for EBS I/O. This optimization provides dedicated throughput to Amazon EBS and an optimized config-
uration stack to provide optimal Amazon EBS I/O performance. This optimization isn't available with all instance
types. Additional usage charges apply when using an EBS-optimized instance.

This setting can be added to the profile or map file for an instance.

If set to True, this setting will enable an instance to be EbsOptimized

ebs_optimized: True

This can also be set as a cloud provider setting in the EC2 cloud configuration:

my-ec2-config:
ebs_optimized: True

del_root_vol_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for the EBS root volumes for an in-
stance. Many AMIs contain “false' as a default, resulting in orphaned volumes in the EC2 account, which may
unknowingly be charged to the account. This setting can be added to the profile or map file for an instance.

If set, this setting will apply to the root EBS volume

del_root_vol_on_destroy: True

This can also be set as a cloud provider setting in the EC2 cloud configuration:

my-ec2-config:
del_root_vol_on_destroy: True

del_all_vols_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for the not-root EBS volumes for an
instance. Many AMIs contain “false' as a default, resulting in orphaned volumes in the EC2 account, which may
unknowingly be charged to the account. This setting can be added to the profile or map file for an instance.

336 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

If set, this setting will apply to any (non-root) volumes that were created by salt-cloud using the “volumes' setting.

The volumes will not be deleted under the following conditions * If a volume is detached before terminating the
instance * If a volume is created without this setting and attached to the instance

del_all_vols_on_destroy: True

This can also be set as a cloud provider setting in the EC2 cloud configuration:

my-ec2-config:
del_all_vols_on_destroy: True

The setting for this may be changed on all volumes of an existing instance using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance
salt-cloud -a keepvol_on_destroy myinstance
salt-cloud -a show_delvol_on_destroy myinstance

The setting for this may be changed on a volume on an existing instance using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance device=/dev/sdal

salt-cloud -a delvol_on_destroy myinstance volume_id=vol-la2b3c4d
salt-cloud -a keepvol_on_destroy myinstance device=/dev/sdal
salt-cloud -a keepvol_on_destroy myinstance volume_id=vol-la2b3c4d
salt-cloud -a show_delvol_on_destroy myinstance device=/dev/sdal
salt-cloud -a show_delvol_on_destroy myinstance volume_id=vol-la2b3c4d

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific instance. An instance with this protec-
tion enabled cannot be destroyed. The EC2 driver adds a show_term_protect action to the regular EC2 functionality.

salt-cloud -a show_term_protect mymachine
salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Alternate Endpoint

Normally, EC2 endpoints are build using the region and the service_url. The resulting endpoint would follow this
pattern:

‘ ec2.<region>.<service_url>

This results in an endpoint that looks like:

|ec2.us-east-1.amazonaws. com

There are other projects that support an EC2 compatibility layer, which this scheme does not account for. This can
be overridden by specifying the endpoint directly in the main cloud configuration file:

my-ec2-config:
endpoint: myendpoint.example.com:1138/services/Cloud

Volume Management

The EC2 driver has several functions and actions for management of EBS volumes.

25.7. Cloud Provider Specifics 337

Salt Documentation, Release 2015.8.8

Creating Volumes

A volume may be created, independent of an instance. A zone must be specified. A size or a snapshot may be
specified (in GiB). If neither is given, a default size of 10 GiB will be used. If a snapshot is given, the size of the
snapshot will be used.

The following parameters may also be set (when providing a snapshot OR size):
« type: choose between standard (magnetic disk), gp2 (SSD), or iol (provisioned IOPS). (default=standard)
 jops: the number of IOPS (only applicable to iol volumes) (default varies on volume size)

« encrypted: enable encryption on the volume (default=false)

salt-cloud -f create_volume ec2 zone=us-east-1b

salt-cloud -f create_volume ec2 zone=us-east-1b size=10

salt-cloud -f create_volume ec2 zone=us-east-1b snapshot=snapl2345678
salt-cloud -f create_volume ec2 size=10 type=standard

salt-cloud -f create_volume ec2 size=10 type=gp2

salt-cloud -f create_volume ec2 size=10 type=iol 10ps=1000

Attaching Volumes

Unattached volumes may be attached to an instance. The following values are required; name or instance_id, vol-
ume_id, and device.

salt-cloud -a attach_volume myinstance volume_id=vol-12345 device=/dev/sdbl

Show a Volume

The details about an existing volume may be retrieved.

salt-cloud -a show_volume myinstance volume_id=vol-12345
salt-cloud -f show_volume ec2 volume_id=vol-12345

Detaching Volumes

An existing volume may be detached from an instance.

salt-cloud -a detach_volume myinstance volume_id=vol-12345

Deleting Volumes

A volume that is not attached to an instance may be deleted.

salt-cloud -f delete_volume ec2 volume_ id=vol-12345

Managing Key Pairs

The EC2 driver has the ability to manage key pairs.

338 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Creating a Key Pair

A key pair is required in order to create an instance. When creating a key pair with this function, the return data
will contain a copy of the private key. This private key is not stored by Amazon, will not be obtainable past this
point, and should be stored immediately.

salt-cloud -f create_keypair ec2 keyname=mykeypair

Importing a Key Pair

salt-cloud -f import_keypair ec2 keyname=mykeypair file=/path/to/id_rsa.pub

Show a Key Pair

This function will show the details related to a key pair, not including the private key itself (which is not stored by
Amazon).

‘salt—cloud -f show_keypair ec2 keyname=mykeypair

Delete a Key Pair

This function removes the key pair from Amazon.

salt-cloud -f delete_keypair ec2 keyname=mykeypair

Launching instances into a VPC

Simple launching into a VPC

In the amazon web interface, identify the id of the subnet into which your image should be created. Then, edit your
cloud.profiles file like so:-

profile-id:

provider: provider-name
subnetid: subnet-XXXXXXXX
image: ami-XXXXXXXX
size: ml.medium
ssh_username: ubuntu
securitygroupid:

- Sg—XXXXXXXX

Specifying interface properties

New in version 2014.7.0.

Launching into a VPC allows you to specify more complex configurations for the network interfaces of your virtual
machines, for example:-

25.7. Cloud Provider Specifics 339

Salt Documentation, Release 2015.8.8

profile-id:
provider: provider-name
image: ami-XXXXXXXX
size: ml.medium
ssh_username: ubuntu

Do not include either 'subnetid' or 'securitygroupid' here if you are
going to manually specify interface configuration
#
network_interfaces:
- DeviceIndex: 0
SubnetId: subnet-XXXXXXXX
SecurityGroupId:
- Sg—XXXXXXXX

Uncomment this line if you would like to set an explicit private
IP address for the ec2 instance

H R H R

PrivateIpAddress: 192.168.1.66

Uncomment this to associate an existing Elastic IP Address with
this network interface:

H oW K R

associate_eip: eipalloc-XXXXXXXX

You can allocate more than one IP address to an interface. Use the
"ip addr list' command to see them.

H oW K W

SecondaryPrivateIpAddressCount: 2

Uncomment this to allocate a new Elastic IP Address to this
interface (will be associated with the primary private ip address
of the interface

T W W I W

allocate_new_eip: True

Uncomment this instead to allocate a new Elastic IP Address to

both the primary private ip address and each of the secondary ones
#

allocate_new_eips: True

Uncomment this if you're creating NAT instances. Allows an instance
to accept IP packets with destinations other than itself.
SourceDestCheck: False

Note that it is an error to assign a ‘subnetid' or “securitygroupid' to a profile where the interfaces are manually
configured like this. These are both really properties of each network interface, not of the machine itself.

25.7.5 Getting Started With GoGrid

GoGrid is a public cloud host that supports Linux and Windows.

Configuration

To use Salt Cloud with GoGrid log into the GoGrid web interface and create an API key. Do this by clicking on **My
Account" and then going to the API Keys tab.

340 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

The apikey and the sharedsecret configuration parameters need to be set in the configuration file to enable
interfacing with GoGrid:

Note: This example is for /etc/salt/cloud.providers or any file in the
Jetc/salt/cloud.providers.d/ directory.

my-gogrid-config:
driver: gogrid
apikey: asdff7896asdh789
sharedsecret: saltybacon

Note: A Note about using Map files with GoGrid:

Due to limitations in the GoGrid API, instances cannot be provisioned in parallel with the GoGrid driver. Map files
will work with GoGrid, but the —P argument should not be used on maps referencing GoGrid instances.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles orinthe /etc/salt/cloud.profiles.d/ di-
rectory:

gogrid_512:
provider: my-gogrid-config
size: 512MB
image: CentOS 6.2 (64-bit) w/ None

Sizes can be obtained using the ——list—-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-gogrid-config
my-gogrid-config:

bandwidth:

None
disk:

30
driver:
get_uuid:
qid:

512MB
name:

512MB
price:

25.7. Cloud Provider Specifics 341

Salt Documentation, Release 2015.8.8

0.095
ram:
512
uuid:
bdele4d7c3a643536e42a35142c7caac34b060e9
...SNIP...

Images can be obtained using the -—1ist-1images option for the salt-cloud command:

salt-cloud --list-images my-gogrid-config
my-gogrid-config:

driver:

extra:

get_uuid:

qid:
18094

name:
Cent0S 6.4 (64-bit) w/ None

uuid:
bfd4055389919e01aa6261828a96cf54c8dcc2c4

...SNIP...

Assigning IPs

New in version 2015.8.0.

The GoGrid API allows IP addresses to be manually assigned. Salt Cloud supports this functionality by allowing an
IP address to be specified using the assign_public_1ip argument. This likely makes the most sense inside a map
file, but it may also be used inside a profile.

gogrid_512:
provider: my-gogrid-config
size: 512MB
image: CentOS 6.2 (64-bit) w/ None
assign_public_ip: 11.38.257.42

25.7.6 Getting Started With Google Compute Engine

Google Compute Engine (GCE) is Google-infrastructure as a service that lets you run your large-scale computing
workloads on virtual machines. This document covers how to use Salt Cloud to provision and manage your virtual
machines hosted within Google's infrastructure.

You can find out more about GCE and other Google Cloud Platform services at https://cloud.google.com.

Dependencies

« LibCloud >= 0.14.1

+ A Google Cloud Platform account with Compute Engine enabled

342 Chapter 25. Salt Cloud

https://cloud.google.com

Salt Documentation, Release 2015.8.8

« A registered Service Account for authorization

« Oh, and obviously you'll need salt

Google Compute Engine Setup

1. Sign up for Google Cloud Platform

Go to https://cloud.google.com and use your Google account to sign up for Google Cloud Platform and com-
plete the guided instructions.

. Create a Project

Next, go to the console at https://cloud.google.com/console and create a new Project. Make sure to select your
new Project if you are not automatically directed to the Project.

Projects are a way of grouping together related users, services, and billing. You may opt to create multiple
Projects and the remaining instructions will need to be completed for each Project if you wish to use GCE and
Salt Cloud to manage your virtual machines.

. Enable the Google Compute Engine service

In your Project, either just click Compute Engine to the left, or go to the APIs & auth section and APIs link and
enable the Google Compute Engine service.

. Create a Service Account

To set up authorization, navigate to APIs & auth section and then the Credentials link and click the CREATE
NEW CLIENT ID button. Select Service Account and click the Create Client ID button. This will automatically
download a . j son file, which may or may not be used in later steps, depending on your version of 1ibcloud.

Look for a new Service Account section in the page and record the generated email address for the match-
ing key/fingerprint. The email address will be used in the service_account_email_address of the
/etc/salt/cloud.providers orthe /etc/salt/cloud.providers.d/*.conf file.

. Key Format

Note: If you are using Llibcloud >= 0.17.0 it is recommended that you use the JSON format file
you downloaded above and skip to the Provider Configuration section below, using the JSON file in place of

"NEW.pem' in the documentation.

If you are using an older version of libcloud or are unsure of the version you have, please follow the instructions
below to generate and format a new P12 key.

In the new Service Account section, click Generate new P12 key, which will automatically download a . p12
private key file. The .pl2 private key needs to be converted to a format compatible with libcloud. This
new Google-generated private key was encrypted using notasecret as a passphrase. Use the following com-
mand and record the location of the converted private key and record the location for use in the ser-
vice_account_private_key of the /etc/salt/cloud file:

openssl pkcsl2 -in ORIG.pl2 -passin pass:notasecret \
-nodes -nocerts | openssl rsa -out NEW.pem

Provider Configuration

Set

up the provider cloud config at /etc/salt/cloud.providers or

/etc/salt/cloud.providers.d/*.conf:

25.7. Cloud Provider Specifics 343

https://github.com/saltstack/salt
https://cloud.google.com
https://cloud.google.com/console

Salt Documentation, Release 2015.8.8

gce-config:
Set up the Project name and Service Account authorization
project: "your-project-id"
service_account_email_address: "123-a5gt@developer.gserviceaccount.com"
service_account_private_key: "/path/to/your/NEW.pem"

Set up the location of the salt master
minion:
master: saltmaster.example.com

Set up grains information, which will be common for all nodes
using this provider
grains:

node_type: broker

release: 1.0.1

driver: gce

Note: The value provided for project must not contain underscores or spaces and is labeled as " "Project ID" on
the Google Developers Console.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Profile Configuration

Set up an initial profile at /etc/salt/cloud.profilesor /etc/salt/cloud.profiles.d/*.conf:

my-gce-profile:
image: centos-6
size: nl-standard-1
location: europe-westl-b
network: default
tags: '["one", "two", "three"]'
metadata: '{"one'": "1", "2": "two"}'
use_persistent_disk: True
delete_boot_pd: False
deploy: True
make_master: False
provider: gce-config

The profile can be realized now with a salt command:

salt-cloud -p my-gce-profile gce-instance

This will create an salt minion instance named gce-instance in GCE. If the command was executed on the
salt-master, its Salt key will automatically be signed on the master.

Once the instance has been created with a salt-minion installed, connectivity to it can be verified with Salt:

salt gce-instance test.ping

344 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

GCE Specific Settings

Consult the sample profile below for more information about GCE specific settings. Some of them are mandatory
and are properly labeled below but typically also include a hard-coded default.

Initial Profile

Set up an initial profile at /etc/salt/cloud.profilesor/etc/salt/cloud.profiles.d/gce.conf:

my-gce-profile:
image: centos-6
size: nl-standard-1
location: europe-westl-b
network: default
tags: '["one", "two", "three"]'
metadata: '{"one": "1", "2": "two"}'
use_persistent_disk: True
delete_boot_pd: False
ssh_interface: public_ips
external_ip: "ephemeral”

image

Image is used to define what Operating System image should be used to for the instance. Examples are Debian 7
(wheezy) and CentOS 6. Required.

size

A “size', in GCE terms, refers to the instance's ‘machine type'. See the on-line documentation for a complete list of
GCE machine types. Required.

location

A “location’, in GCE terms, refers to the instance's "zone'. GCE has the notion of both Regions (e.g. us-centrall,
europe-west1, etc) and Zones (e.g. us-centrall-a, us-centrall-b, etc). Required.

network

Use this setting to define the network resource for the instance. All GCE projects contain a network named " default’
but it's possible to use this setting to create instances belonging to a different network resource.

tags

GCE supports instance/network tags and this setting allows you to set custom tags. It should be a list of strings and
must be parse-able by the python ast.literal_eval() function to convert it to a python list.

25.7. Cloud Provider Specifics 345

Salt Documentation, Release 2015.8.8

metadata

GCE supports instance metadata and this setting allows you to set custom metadata. It should be a hash of key/value
strings and parse-able by the python ast.literal_eval() function to convert it to a python dictionary.

use_persistent_disk

Use this setting to ensure that when new instances are created, they will use a persistent disk to preserve data
between instance terminations and re-creations.

delete_boot_pd

In the event that you wish the boot persistent disk to be permanently deleted when you destroy an instance, set
delete_boot_pd to True.

ssh_interface

New in version 2015.5.0.
Specify whether to use public or private IP for deploy script.
Valid options are:

« private_ips: The salt-master is also hosted with GCE

« public_ips: The salt-master is hosted outside of GCE

external_ip

Per instance setting: Used a named fixed IP address to this host.
Valid options are:

« ephemeral: The host will use a GCE ephemeral IP

« None: No external IP will be configured on this host.

Optionally, pass the name of a GCE address to use a fixed IP address. If the address does not already exist, it will be
created.

ex_disk_type

GCE supports two different disk types, pd-standard and pd-ssd. The default disk type setting is pd-
standard. To specify using an SSD disk, set pd—-ssd as the value.

New in version 2014.7.0.

ip_forwarding

GCE instances can be enabled to use IP Forwarding. When set to True, this options allows the instance to
send/receive non-matching src/dst packets. Default is False.

New in version 2015.8.1.

346 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Profile with scopes

Scopes can be specified by setting the optional ex_service_accounts key in your cloud profile. The following
example enables the bigquery scope.

my-gce-profile:

image: centos-6

ssh_username: salt

size: fl-micro

location: us-centrall-a
network: default

tags: '["one", "two", "three"]'
metadata: '{"one'": "1", "2": "two",

IISShKeySII: llll}l

use_persistent_disk: True
delete_boot_pd: False

deploy: False

make_master: False

provider: gce-config
ex_service_accounts:

- scopes:
- bigquery

Email can also be specified as an (optional) parameter.

my-gce-profile:
...snip
ex_service_accounts:
- scopes:
- bigquery
email: default

There can be multiple entries for scopes since ex-service_accounts accepts a list of dictionaries. For more
information refer to the libcloud documentation on specifying service account scopes.

SSH Remote Access

GCE instances do not allow remote access to the root user by default. Instead, another user must be used
to run the deploy script using sudo. Append something like this to /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/*.conf:

my-gce-profile:
SSH to GCE instances as gceuser
ssh_username: gceuser

Use the local private SSH key file located here
ssh_keyfile: /etc/cloud/google_compute_engine

If you have not already used this SSH key to login to instances in this GCE project you will also need to add the
public key to your projects metadata at https://cloud.google.com/console. You could also add it via the metadata
setting too:

my-gce-profile:

25.7. Cloud Provider Specifics 347

http://libcloud.readthedocs.org/en/latest/compute/drivers/gce.html#specifying-service-account-scopes
https://cloud.google.com/console

Salt Documentation, Release 2015.8.8

metadata: '{"one": "1", "2": "two",
"sshKeys'": "gceuser:ssh-rsa <Your SSH Public Key> gceuser@host"}'

Single instance details

This action is a thin wrapper around —-full-query, which displays details on a single instance only. In an
environment with several machines, this will save a user from having to sort through all instance data, just to
examine a single instance.

salt-cloud -a show_instance myinstance

Destroy, persistent disks, and metadata

As noted in the provider configuration, it's possible to force the boot persistent disk to be deleted when you destroy
the instance. The way that this has been implemented is to use the instance metadata to record the cloud profile used
when creating the instance. When destroy is called, if the instance contains a salt-cloud-profile key, it's
value is used to reference the matching profile to determine if delete_boot_pd is set to True.

Be aware that any GCE instances created with salt cloud will contain this custom salt-cloud-profile metadata
entry.

List various resources

It's also possible to list several GCE resources similar to what can be done with other providers. The following
commands can be used to list GCE zones (locations), machine types (sizes), and images.

salt-cloud --list-locations gce
salt-cloud --list-sizes gce
salt-cloud --list-images gce

Persistent Disk

The Compute Engine provider provides functions via salt-cloud to manage your Persistent Disks. You can create and
destroy disks as well as attach and detach them from running instances.

Create

When creating a disk, you can create an empty disk and specify its size (in GB), or specify either an “image' or
“snapshot".

salt-cloud -f create_disk gce disk_name=pd location=us-centrall-b size=200

Delete

Deleting a disk only requires the name of the disk to delete

salt-cloud -f delete_disk gce disk_name=old-backup

348 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Attach

Attaching a disk to an existing instance is really an "action' and requires both an instance name and disk name.
It's possible to use this ation to create bootable persistent disks if necessary. Compute Engine also supports attach-
ing a persistent disk in READ_ONLY mode to multiple instances at the same time (but then cannot be attached in
READ_WRITE to any instance).

salt-cloud -a attach_disk myinstance disk_name=pd mode=READ_WRITE boot=yes

Detach

Detaching a disk is also an action against an instance and only requires the name of the disk. Note that this does
not safely sync and umount the disk from the instance. To ensure no data loss, you must first make sure the disk is
unmounted from the instance.

salt-cloud -a detach_disk myinstance disk_name=pd

Show disk

It's also possible to look up the details for an existing disk with either a function or an action.

salt-cloud -a show_disk myinstance disk_name=pd
salt-cloud -f show_disk gce disk_name=pd

Create snapshot

You can take a snapshot of an existing disk's content. The snapshot can then in turn be used to create other persistent
disks. Note that to prevent data corruption, it is strongly suggested that you unmount the disk prior to taking a
snapshot. You must name the snapshot and provide the name of the disk.

salt-cloud -f create_snapshot gce name=backup-20140226 disk_name=pd

Delete snapshot

You can delete a snapshot when it's no longer needed by specifying the name of the snapshot.

salt-cloud -f delete_snapshot gce name=backup-20140226

Show snapshot

Use this function to look up information about the snapshot.

salt-cloud -f show_snapshot gce name=backup-20140226

Networking

Compute Engine supports multiple private networks per project. Instances within a private network can easily
communicate with each other by an internal DNS service that resolves instance names. Instances within a private

25.7. Cloud Provider Specifics 349

Salt Documentation, Release 2015.8.8

network can also communicate with either directly without needing special routing or firewall rules even if they
span different regions/zones.

Networks also support custom firewall rules. By default, traffic between instances on the same private network is
open to all ports and protocols. Inbound SSH traffic (port 22) is also allowed but all other inbound traffic is blocked.

Create network

New networks require a name and CIDR range. New instances can be created and added to this network by setting
the network name during create. It is not possible to add/remove existing instances to a network.

salt-cloud -f create_network gce name=mynet cidr=10.10.10.0/24

Destroy network

Destroy a network by specifying the name. Make sure that there are no instances associated with the network prior
to deleting it or you'll have a bad day.

salt-cloud -f delete_network gce name=mynet

Show network

Specify the network name to view information about the network.

salt-cloud -f show_network gce name=mynet

Create address

Create a new named static IP address in a region.

salt-cloud -f create_address gce name=my-fixed-ip region=us-centrall

Delete address

Delete an existing named fixed IP address.

salt-cloud -f delete_address gce name=my-fixed-ip region=us-centrall

Show address

View details on a named address.

salt-cloud -f show_address gce name=my-fixed-ip region=us-centrall

350 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Create firewall

You'll need to create custom firewall rules if you want to allow other traffic than what is described above. For
instance, if you run a web service on your instances, you'll need to explicitly allow HTTP and/or SSL traffic. The
firewall rule must have a name and it will use the ‘default' network unless otherwise specified with a ‘network’
attribute. Firewalls also support instance tags for source/destination

salt-cloud -f create_fwrule gce name=web allow=tcp:80,tcp:443,icmp

Delete firewall

Deleting a firewall rule will prevent any previously allowed traffic for the named firewall rule.

salt-cloud -f delete_fwrule gce name=web

Show firewall

Use this function to review an existing firewall rule's information.

salt-cloud -f show_fwrule gce name=web

Load Balancer

Compute Engine possess a load-balancer feature for splitting traffic across multiple instances. Please reference the
documentation for a more complete discription.

The load-balancer functionality is slightly different than that described in Google's documentation. The concept of
TargetPool and ForwardingRule are consolidated in salt-cloud/libcloud. HTTP Health Checks are optional.

HTTP Health Check

HTTP Health Checks can be used as a means to toggle load-balancing across instance members, or to detect if an
HTTP site is functioning. A common use-case is to set up a health check URL and if you want to toggle traffic on/off
to an instance, you can temporarily have it return a non-200 response. A non-200 response to the load-balancer's
health check will keep the LB from sending any new traffic to the *“down" instance. Once the instance's health
check URL beings returning 200-responses, the LB will again start to send traffic to it. Review Compute Engine's
documentation for allowable parameters. You can use the following salt-cloud functions to manage your HTTP
health checks.

salt-cloud -f create_hc gce name=myhc path=/ port=80
salt-cloud -f delete_hc gce name=myhc
salt-cloud -f show_hc gce name=myhc

Load-balancer

When creating a new load-balancer, it requires a name, region, port range, and list of members. There are other
optional parameters for protocol, and list of health checks. Deleting or showing details about the LB only requires
the name.

25.7. Cloud Provider Specifics 351

https://developers.google.com/compute/docs/load-balancing/

Salt Documentation, Release 2015.8.8

salt-cloud -f create_1lb gce name=1b region=... ports=80 members=wl,w2,w3
salt-cloud -f delete_1lb gce name=1b
salt-cloud -f show_1b gce name=1b

You can also create a load balancer using a named fixed IP addressby specifying the name of the address. If the
address does not exist yet it will be created.

salt-cloud -f create_1lb gce name=my-1b region=us-centrall ports=234 members=sl,s2,s3 ad#iress:my-lb—'i[

Attach and Detach LB

It is possible to attach or detach an instance from an existing load-balancer. Both the instance and load-balancer
must exist before using these functions.

salt-cloud -f attach_1lb gce name=1lb member=w4
salt-cloud -f detach_1b gce name=1b member=oops

25.7.7 Getting Started With HP Cloud
HP Cloud is a major public cloud platform and uses the libcloud openstack driver. The current version of OpenStack

that HP Cloud uses is Havana. When an instance is booted, it must have a floating IP added to it in order to connect
to it and further below you will see an example that adds context to this statement.

Set up a cloud provider configuration file

To use the openstack driver for HP Cloud, set up the cloud provider configuration file as in the example shown below:

/etc/salt/cloud.providers.d/hpcloud.conf:

hpcloud-config:
Set the location of the salt-master
#
minion:
master: saltmaster.example.com

Configure HP Cloud using the OpenStack plugin

#

identity_url: https://region-b.geo-1.identity.hpcloudsvc.com:35357/v2.0/tokens
compute_name: Compute

protocol: -1ipv4

Set the compute region:
#
compute_region: region-b.geo-1

Configure HP Cloud authentication credentials
#

user: myname

tenant: myname-projectl

password: XXXXXXXXX

keys to allow connection to the instance launched
#
ssh_key_name: yourkey

352 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

ssh_key_file: /path/to/key/yourkey.priv

driver: openstack

The subsequent example that follows is using the openstack driver.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use prov-ider to refer to provider configurations that you define.

Compute Region
Originally, HP Cloud, in its OpenStack Essex version (1.0), had 3 availability zones in one region, US West (region-
a.geo-1), which each behaved each as a region.

This has since changed, and the current OpenStack Havana version of HP Cloud (1.1) now has simplified this and
now has two regions to choose from:

region-a.geo-1 -> US West
region-b.geo-1 -> US East

Authentication

The user is the same user as is used to log into the HP Cloud management Ul The tenant can be found in the
upper left under " "Project/Region/Scope". It is often named the same as user albeit with a ~projectl appended.
The password is of course what you created your account with. The management Ul also has other information
such as being able to select US East or US West.

Set up a cloud profile config file

The profile shown below is a know working profile for an Ubuntu instance. The profile configuration file is stored
in the following location:

/etc/salt/cloud.profiles.d/hp_ael_ubuntu.conf:

hp_ael_ubuntu:
provider: hp_ael
image: 9302692b-b787-4b52-a3a6-daebb79cb498
ignore_cidr: 10.0.0.1/24
networks:
- floating: Ext-Net
size: standard.small
ssh_key_file: /root/keys/test.key
ssh_key_name: test
ssh_username: ubuntu

Some important things about the example above:

« The image parameter can use either the image name or image ID which you can obtain by running in the
example below (this case US East):

25.7. Cloud Provider Specifics 353

Salt Documentation, Release 2015.8.8

salt-cloud --list-images hp_ael

« The parameter i gnore_cidr specifies a range of addresses to ignore when trying to connect to the instance.
In this case, it's the range of IP addresses used for an private IP of the instance.

« The parameter networks is very important to include. In previous versions of Salt Cloud, this is what made
it possible for salt-cloud to be able to attach a floating IP to the instance in order to connect to the instance and
set up the minion. The current version of salt-cloud doesn't require it, though having it is of no harm either.
Newer versions of salt-cloud will use this, and without it, will attempt to find a list of floating IP addresses to
use regardless.

« The ssh_key_file and ssh_key_name are the keys that will make it possible to connect to the instance
to set up the minion

« The ssh_username parameter, in this case, being that the image used will be ubuntu, will make it possible
to not only log in but install the minion

Launch an instance

To instantiate a machine based on this profile (example):

salt-cloud -p hp_ael_ubuntu ubuntu_instance_1

After several minutes, this will create an instance named ubuntu_instance_1 running in HP Cloud in the US East
region and will set up the minion and then return information about the instance once completed.

Manage the instance

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt ubuntu_instance_1 ping

SSH to the instance

Additionally, the instance can be accessed via SSH using the floating IP assigned to it

ssh ubuntu@<floating ip>

Using a private IP

Alternatively, in the cloud profile, using the private IP to log into the instance to set up the minion is another option,
particularly if salt-cloud is running within the cloud on an instance that is on the same network with all the other
instances (minions)

The example below is a modified version of the previous example. Note the use of ssh_interface:

hp_ael_ubuntu:
provider: hp_ael
image: 9302692b-b787-4b52-a3a6-daebb79cb498
size: standard.small
ssh_key_file: /root/keys/test.key
ssh_key_name: test
ssh_username: ubuntu
ssh_interface: private_ips

354 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

With this setup, salt-cloud will use the private IP address to ssh into the instance and set up the salt-minion

25.7.8 Getting Started With Joyent

Joyent is a public cloud host that supports SmartOS, Linux, FreeBSD, and Windows.

Dependencies

This driver requires the Python requests library to be installed.

Configuration

The Joyent cloud requires three configuration parameters. The user name and password that are used to log into the
Joyent system, and the location of the private ssh key associated with the Joyent account. The ssh key is needed to
send the provisioning commands up to the freshly created virtual machine.

Note: This example is for /etc/salt/cloud.providers or any file in the
Jetc/salt/cloud.providers.d/ directory.

my-joyent-config:
driver: joyent
user: fred
password: saltybacon
private_key: /root/mykey.pem
keyname: mykey

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles orinthe /etc/salt/cloud.profiles.d/ di-
rectory:

joyent_512
provider: my-joyent-config
size: Extra Small 512 MB
image: Arch Linux 2013.06

Sizes can be obtained using the —-list-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-joyent-config
my-joyent-config:

25.7. Cloud Provider Specifics 355

Salt Documentation, Release 2015.8.8

Extra Small 512 MB:
default:
false
disk:
15360
qid:
Extra Small 512 MB
memory:
512
name:
Extra Small 512 MB
swap:
1024
vcpus:
1
...SNIP...

Images can be obtained using the -—1ist-images option for the salt-cloud command:

salt-cloud --list-images my-joyent-config
my-joyent-config:

description:
A 32-bit Smart0S image with just essential packages
installed. Ideal for users who are comfortable with setting
up their own environment and tools.
disabled:
False
files:
- compression:
bzip2
- shal:
40cdc6457c237cf6306103c74b5f45f5bf2d9bbe
- size:
82492182
name:
base
os:
smartos
owner:
352971aa-31ba-496c-9ade-a379feaecd52
public:
True
.. .SNIP...

SmartDataCenter

This driver can also be used with the Joyent SmartDataCenter project. More details can be found at:

Using SDC requires that an api_host_suffix is set. The default value for this is .api.joyentcloud.com. All characters,
including the leading ., should be included:

356 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

api_host_suffix: .api.myhostname.com

Miscellaneous Configuration

The following configuration items can be set in either provider or profile confuration files.

use_ssl

When set to True (the default), attach https: // to any URL that does not already have http:// or https://
included at the beginning. The best practice is to leave the protocol out of the URL, and use this setting to manage
it.

verify_ssl

When set to True (the default), the underlying web library will verify the SSL certificate. This should only be set to
False for debugging.’

25.7.9 Getting Started With LXC

The LXC module is designed to install Salt in an LXC container on a controlled and possibly remote minion.
In other words, Salt will connect to a minion, then from that minion:
« Provision and configure a container for networking access
« Use those modules to deploy salt and re-attach to master.
- lxc runner
- lxc module

- seed

Limitations

« You can only act on one minion and one provider at a time.

« Listing images must be targeted to a particular LXC provider (nothing will be outputted with all)

Operation
Salt's LXC support does use lxc.init via the Ixc.cloud_init_interface and seeds the minion via
seed.mkconfig.
You can provide to those Ixc VMs a profile and a network profile like if you were directly using the minion module.
Order of operation:

« Create the LXC container on the desired minion (clone or template)

« Change LXC config options (if any need to be changed)

« Start container

+ Change base passwords if any

25.7. Cloud Provider Specifics 357

Salt Documentation, Release 2015.8.8

« Change base DNS configuration if necessary
« Wait for LXC container to be up and ready for ssh
« Test SSH connection and bailout in error

« Upload deploy script and seeds, then re-attach the minion.

Provider configuration

Here is a simple provider configuration:

Note: This example goes in /Jetc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.
devhostl0-1xc:

target: devhostl0

driver: 1xc

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Profile configuration

Please read LXC Management with Salt before anything else. And specially Profiles.
Here are the options to configure your containers:
target Host minion id to install the Ixc Container into

Ixc_profile Name of the profile or inline options for the LXC vm creation/cloning, please see Container
Profiles.

network_profile Name of the profile or inline options for the LXC vm network settings, please see
Network Profiles.

nic_opts Totally optional. Per interface new-style configuration options mappings which will override
any profile default option:

ethO: {'mac': '00:16:3e:01:29:40"',
'gateway': None, (default)
'"link': 'bro', (default)
'gateway': None, (default)
'netmask': '', (default)
'ip': '22.1.4.25'}}

password password for root and sysadmin users
dnsservers List of DNS servers to use. This is optional.
minion minion configuration (see Minion Configuration in Salt Cloud)

bootstrap_delay specify the time to wait (in seconds) between container creation and salt bootstrap
execution. It is useful to ensure that all essential services have started before the bootstrap script
is executed. By default there's no wait time between container creation and bootstrap unless you
are on systemd where we wait that the system is no more in starting state.

358 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

bootstrap_shell shell for bootstraping script (default: /bin/sh)

script defaults to salt-boostrap

script_args arguments which are given to the bootstrap script. the {0} placeholder will be replaced by
the path which contains the minion config and key files, eg:

script_args="-c {0}"

Using profiles:

Note: This example would go in /etc/salt/cloud.profiles or any file in the
Jetc/salt/cloud.profiles.d/ directory.
devhostl10-1xc:
provider: devhostl@-1xc
Ixc_profile: foo
network_profile: bar
minion:
master: 10.5.0.1
master_port: 4506

Using inline profiles (eg to override the network bridge):

devhostll-1xc:
provider: devhostl0-1xc
lxc_profile:
clone_from: foo
network_profile:
etho:
link: 1xcbro
minion:
master: 10.5.0.1
master_port: 4506

Using a Ixc template instead of a clone:

devhostlil-1xc:
provider: devhostl@-1xc
Ixc_profile:
template: ubuntu
options:
release: trusty
network_profile:
etho:
link: 1xcbro
minion:
master: 10.5.0.1
master_port: 4506

Static ip:

Note: This example would go in /etc/salt/cloud.profiles or any file in the
Jetc/salt/cloud.profiles.d/ directory.
devhostl0-1xc:

provider: devhostl10-1xc

nic_opts:

etho:
ipv4: 10.0.3.9
minion:

25.7. Cloud Provider Specifics 359

Salt Documentation, Release 2015.8.8

master: 10.5.0.1
master_port: 4506

DHCP:

Note: This example would go in /etc/salt/cloud.profiles or any file in the
/etc/salt/cloud.profiles.d/ directory.
devhost10-1xc:
provider: devhostl@-1xc
minion:
master: 10.5.0.1
master_port: 4506

Driver Support

« Container creation
« Image listing (LXC templates)

« Running container information (IP addresses, etc.)

25.7.10 Getting Started With Linode

Linode is a public cloud host with a focus on Linux instances.

Starting with the 2015.8.0 release of Salt, the Linode driver uses Linode's native REST API There are no external
dependencies required to use the Linode driver.

Configuration

Linode requires a single API key, but the default root password for new instances also needs to be set:

Note: This example is for /etc/salt/cloud.providers or any file in the
Jetc/salt/cloud.providers.d/ directory.

my-linode-config:
apikey: asldkgfakl;sdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf
password: FOObarbaz
ssh_pubkey: ssh-ed25519 AAAAC3NzaCllZDI1INTES5AAAAIKHEOLLbeXgaqRQTINBAopVz366SdYcOKKX33yAng+2R user@l
ssh_key_file: ~/.ssh/id_ed25519
driver: linode

The password needs to be 8 characters and contain lowercase, uppercase, and numbers.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

360 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles orinthe /etc/salt/cloud.profiles.d/ di-
rectory:

linode_1024:
provider: my-linode-config
size: Linode 2048
image: CentOS 7
location: London, England, UK

Sizes can be obtained using the ——11ist-sizes option for the salt-cloud command:

salt-cloud --list-sizes my-linode-config
my-linode-config:

bandwidth:

2000
disk:

49152
driver:
get_uuid:
qid:

1
name:

Linode 1024
price:

20.0
ram:

1024
uuid:

03e18728ce4629e2ac07c9cbb48afffb8cbh499c4

...SNIP...

Images can be obtained using the ——11ist-1images option for the salt-cloud command:

salt-cloud --list-images my-1linode-config
my-linode-config:

extra:

get_uuid:
qid:

25.7. Cloud Provider Specifics 361

Salt Documentation, Release 2015.8.8

112
name:
Arch Linux 2013.06
uuid:
8457f92eaffc92b7666b6734a96ad7abela8a6bdd
...SNIP...

Locations can be obtained using the ——1ist—-locations option for the salt-cloud command:

salt-cloud --list-locations my-linode-config
my-linode-config:

abbreviation:
atlanta
qid:
4
Dallas, TX, USA:
abbreviation:
dallas
id:
2
...SNIP...

Cloning

When salt-cloud accesses Linode via linode-python it can clone machines.

It is safest to clone a stopped machine. To stop a machine run

salt-cloud -a stop machine_to_clone

To create a new machine based on another machine, add an entry to your linode cloud profile that looks like this:

li-clone:
provider: my-linode-config
clonefrom: machine_to_clone
script_args: -C -F

Then run salt-cloud as normal, specifying —p 1i-clone. The profile name can be anything; It doesn't have to be
li-clone.

clonefrom: is the name of an existing machine in Linode from which to clone. Script_args: -C -Fis
necessary to avoid re-deploying Salt via salt-bootstrap. —C will just re-deploy keys so the new minion will not have
a duplicate key or minion_id on the Master, and —F will force a rewrite of the Minion config file on the new Minion.
If —F isn't provided, the new Minion will have the machine_to_clone’s Minion ID, instead of its own Minion
ID, which can cause problems.

Note: Pull Request #733 to the salt-bootstrap repo makes the —F argument non-necessary. Once that change is
released into a stable version of the Bootstrap Script, the —C argument will be sufficient for the script_args

setting.

362 Chapter 25. Salt Cloud

https://github.com/saltstack/salt-bootstrap/pull/733

Salt Documentation, Release 2015.8.8

If the machine_to_clone does not have Salt installed on it, refrain from using the script_args: -C -F
altogether, because the new machine will need to have Salt installed.

25.7.11 Getting Started With OpenStack

OpenStack is one the most popular cloud projects. It's an open source project to build public and/or private clouds.
You can use Salt Cloud to launch OpenStack instances.

Dependencies

« Libcloud >=0.13.2

Configuration

« Using the new format, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/openstack.conf:

my-openstack-config:
Set the location of the salt-master
#
minion:
master: saltmaster.example.com

Configure the OpenStack driver

#

identity_url: http://identity.youopenstack.com/v2.0/tokens
compute_name: nova

protocol: -ipv4

compute_region: RegionOne

Configure Openstack authentication credentials
#

user: myname

password: 123456

tenant is the project name

tenant: myproject

driver: openstack

skip SSL certificate validation (default false)
insecure: false

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use prov-ider to refer to provider configurations that you define.

25.7. Cloud Provider Specifics 363

Salt Documentation, Release 2015.8.8

Using nova client to get information from OpenStack

One of the best ways to get information about OpenStack is using the novaclient python package (available in pypi as
python-novaclient). The client configuration is a set of environment variables that you can get from the Dashboard.
Log in and then go to Project -> Access & security -> API Access and download the *"OpenStack RC file". Then:

source /path/to/your/rcfile
nova credentials
nova endpoints

In the nova endpoints output you can see the information about compute_region and compute_name.

Compute Region

It depends on the OpenStack cluster that you are using. Please, have a look at the previous sections.

Authentication

The user and password is the same user as is used to log into the OpenStack Dashboard.

Profiles

Here is an example of a profile:

openstack_512:
provider: my-openstack-config
size: ml.tiny
image: cirros-0.3.1-x86_64-uec
ssh_key_file: /tmp/test.pem
ssh_key_name: test
ssh_interface: private_ips

The following list explains some of the important properties.
size can be one of the options listed in the output of nova flavor-list.
image can be one of the options listed in the output of nova image-1list.

ssh_key_file The SSH private key that the salt-cloud uses to SSH into the VM after its first booted in order to
execute a command or script. This private key's public key must be the openstack public key inserted into the
authorized_key's file of the VM's root user account.

ssh_key_name The name of the openstack SSH public key that is inserted into the authorized_keys file of the VM's
root user account. Prior to using this public key, you must use openstack commands or the horizon web UI
to load that key into the tenant's account. Note that this openstack tenant must be the one you defined in the
cloud provider.

ssh_interface This option allows you to create a VM without a public IP. If this option is omitted and the VM does
not have a public IP, then the salt-cloud waits for a certain period of time and then destroys the VM. With the
nova drive, private cloud networks can be defined here.

For more information concerning cloud profiles, see here.

364 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

change_password

If no ssh_key_file is provided, and the server already exists, change_password will use the api to change the root
password of the server so that it can be bootstrapped.

change_password: True

userdata_file

Use userdata_file to specify the userdata file to upload for use with cloud-init if available.

userdata_file: /etc/salt/cloud-init/packages.yml

25.7.12 Getting Started With Parallels

Parallels Cloud Server is a product by Parallels that delivers a cloud hosting solution. The PARALLELS module for
Salt Cloud enables you to manage instances hosted using PCS. Further information can be found at:
http://www.parallels.com/products/pcs/

« Using the old format, set up the cloud configuration at /etc/salt/cloud:

Set up the location of the salt master
#
minion:

master: saltmaster.example.com

Set the PARALLELS access credentials (see below)
#

PARALLELS.user: myuser

PARALLELS.password: badpass

Set the access URL for your PARALLELS host
#
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

« Using the new format, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/parallels.conf:

my-parallels-config:
Set up the location of the salt master
#
minion:
master: saltmaster.example.com

Set the PARALLELS access credentials (see below)
#

user: myuser

password: badpass

Set the access URL for your PARALLELS provider

#

url: https://api.cloud.xmission.com:4465/paci/v1.0/
driver: parallels

25.7. Cloud Provider Specifics 365

http://www.parallels.com/products/pcs/

Salt Documentation, Release 2015.8.8

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the prov-ider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Access Credentials

The user, password, and url will be provided to you by your cloud host. These are all required in order for the
PARALLELS driver to work.

Cloud Profiles

Setup an initial profileat /etc/salt/cloud.profilesor /etc/salt/cloud.profiles.d/parallels.conf:

parallels-ubuntu:
provider: my-parallels-config
image: ubuntu-12.04-x86_64

The profile can be realized now with a salt command:

salt-cloud -p parallels-ubuntu myubuntu

This will create an instance named myubuntu on the cloud host. The minion that is installed on this instance will
have an id of myubuntu. If the command was executed on the salt-master, its Salt key will automatically be signed
on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt myubuntu test.ping

Required Settings

The following settings are always required for PARALLELS:

« Using the old cloud configuration format:

PARALLELS.user: myuser
PARALLELS.password: badpass
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

« Using the new cloud configuration format:

my-parallels-config:
user: myuser
password: badpass
url: https://api.cloud.xmission.com:4465/paci/v1.0/
driver: parallels

366 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Optional Settings

Unlike other cloud providers in Salt Cloud, Parallels does not utilize a s1ze setting. This is because Parallels allows
the end-user to specify a more detailed configuration for their instances than is allowed by many other cloud hosts.
The following options are available to be used in a profile, with their default settings listed.

Description of the instance. Defaults to the instance name.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpu_number: 1
cpu_power: 1000

How many megabytes of RAM
ram: 256

Bandwidth available, in kbps
bandwidth: 100

How many public IPs will be assigned to this instance
ip_num: 1

Size of the instance disk (in GiB)
disk_size: 10

Username and password
ssh_username: root
password: <value from PARALLELS.password>

The name of the image, from ' ‘salt-cloud --list-images parallels’
image: ubuntu-12.04-x86_64

25.7.13 Getting Started With Proxmox
Proxmox Virtual Environment is a complete server virtualization management solution, based on LXC and full vir-
tualization with KVM. Further information can be found at:

http://www.proxmox.org/

Dependencies

« [Py >=0.81
« requests >= 2.2.1

Please note: This module allows you to create both OpenVZ and KVM but installing Salt on it will only be done
when the VM is an OpenVZ container rather than a KVM virtual machine.

« Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/proxmox.conf:

my-proxmox-config:
Set up the location of the salt master
#
minion:
master: saltmaster.example.com

25.7. Cloud Provider Specifics 367

http://www.proxmox.org/

Salt Documentation, Release 2015.8.8

Set the PROXMOX access credentials (see below)
#

user: myuser@pve

password: badpass

Set the access URL for your PROXMOX host
#

url: your.proxmox.host

driver: proxmox

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Access Credentials

The user, password, and url will be provided to you by your cloud host. These are all required in order for the
PROXMOX driver to work.

Cloud Profiles

Setup an initial profile at /etc/salt/cloud.profilesor /etc/salt/cloud.profiles.d/proxmox.conf:

« Configure a profile to be used:

proxmox-ubuntu:
provider: my-proxmox-config
image: local:vztmpl/ubuntu-12.04-standard_12.04-1_amd64.tar.gz
technology: openvz

host needs to be set to the configured name of the proxmox host
and not the 1ip address or FQDN of the server

host: myvmhost

ip_address: 192.168.100.155

password: topsecret

The profile can be realized now with a salt command:

salt-cloud -p proxmox-ubuntu myubuntu

This will create an instance named myubuntu on the cloud host. The minion that is installed on this instance will
have a hostname of myubuntu. If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt myubuntu test.ping

Required Settings

The following settings are always required for PROXMOX:

368 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

« Using the new cloud configuration format:

my-proxmox-config:
driver: proxmox
user: saltcloud@pve
password: xyzzy
url: your.proxmox.host

Optional Settings

Unlike other cloud providers in Salt Cloud, Proxmox does not utilize a size setting. This is because Proxmox
allows the end-user to specify a more detailed configuration for their instances, than is allowed by many other cloud
providers. The following options are available to be used in a profile, with their default settings listed.

Description of the instance.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpus: 1
cpuunits: 1000

How many megabytes of RAM
memory: 256

How much swap space in MB
swap: 256

Whether to auto boot the vm after the host reboots
onboot: 1

Size of the instance disk (in GiB)
disk: 10

Host to create this vm on
host: myvmhost

Nameservers. Defaults to host
nameserver: 8.8.8.8 8.8.4.4

Username and password
ssh_username: root
password: <value from PROXMOX.password>

The name of the image, from ' ‘salt-cloud --list-images proxmox '
image: local:vztmpl/ubuntu-12.04-standard_12.04-1_amd64.tar.gz

25.7.14 Getting Started With Rackspace

Rackspace is a major public cloud platform which may be configured using either the rackspace or the openstack
driver, depending on your needs.

Please note that the rackspace driver is intended only for 1st gen instances, aka, " the old cloud" at Rackspace. It
is required for 1st gen instances, but will not work with OpenStack-based instances. Unless you explicitly have a
reason to use it, it is highly recommended that you use the openstack driver instead.

25.7. Cloud Provider Specifics 369

Salt Documentation, Release 2015.8.8

Dependencies

« Libcloud >=0.13.2

Configuration

To use the openstack driver (recommended), set up the cloud configuration at /etc/salt/cloud.providers
or /etc/salt/cloud.providers.d/rackspace.conf

my-rackspace-config:
Set the location of the salt-master
#
minion:
master: saltmaster.example.com

Configure Rackspace using the OpenStack plugin

#

identity_url: 'https://identity.api.rackspacecloud.com/v2.0/tokens'
compute_name: cloudServersOpenStack

protocol: ipv4

Set the compute region:
#
compute_region: DFW

Configure Rackspace authentication credentials
#

user: myname

tenant: 123456

apikey: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

driver: openstack

To use the rackspace driver, set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/rackspace.conf:

my-rackspace-config:
driver: rackspace
The Rackspace login user
user: fred
The Rackspace user's apikey
apikey: 901d3f579h23c8v73q9

The settings that follow are for using Rackspace with the openstack driver, and will not work with the rackspace
driver.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Compute Region

Rackspace currently has six compute regions which may be used:

370 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

DFW -> Dallas/Forth Worth
ORD -> Chicago

SYD -> Sydney

LON -> London

IAD -> Northern Virginia
HKG -> Hong Kong

Note: Currently the LON region is only available with a UK account, and UK accounts cannot access other regions

Authentication

The user is the same user as is used to log into the Rackspace Control Panel. The tenant and apikey can be
found in the API Keys area of the Control Panel. The apikey will be labeled as API Key (and may need to be
generated), and tenant will be labeled as Cloud Account Number.

An initial profile can be configured in /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/rackspace.conf:

openstack_512:
provider: my-rackspace-config
size: 512 MB Standard
image: Ubuntu 12.04 LTS (Precise Pangolin)

To instantiate a machine based on this profile:

salt-cloud -p openstack_512 myinstance

This will create a virtual machine at Rackspace with the name myinstance. This operation may take several
minutes to complete, depending on the current load at the Rackspace data center.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt myinstance test.ping

RackConnect Environments

Rackspace offers a hybrid hosting configuration option called RackConnect that allows you to use a physical firewall
appliance with your cloud servers. When this service is in use the public_ip assigned by nova will be replaced by a
NAT ip on the firewall. For salt-cloud to work properly it must use the newly assigned *“access ip" instead of the
Nova assigned public ip. You can enable that capability by adding this to your profiles:

openstack_512:
provider: my-openstack-config
size: 512 MB Standard
image: Ubuntu 12.04 LTS (Precise Pangolin)
rackconnect: True

Managed Cloud Environments

Rackspace offers a managed service level of hosting. As part of the managed service level you have the ability to
choose from base of lamp installations on cloud server images. The post build process for both the base and the lamp
installations used Chef to install things such as the cloud monitoring agent and the cloud backup agent. It also takes
care of installing the lamp stack if selected. In order to prevent the post installation process from stomping over the
bootstrapping you can add the below to your profiles.

25.7. Cloud Provider Specifics 371

Salt Documentation, Release 2015.8.8

openstack_512:
provider: my-rackspace-config
size: 512 MB Standard
image: Ubuntu 12.04 LTS (Precise Pangolin)
managedcloud: True

First and Next Generation Images

Rackspace provides two sets of virtual machine images, first, and next generation. As of 0.8.9 salt-cloud will
default to using the next generation images. To force the use of first generation images, on the profile configuration
please add:

FreeBSD-9.0-512:
provider: my-rackspace-config
size: 512 MB Standard
image: FreeBSD 9.0
force_first_gen: True

Private Subnets

By default salt-cloud will not add Rackspace private networks to new servers. To enable a private net-
work to a server instantiated by salt cloud, add the following section to the provider file (typically
/etc/salt/cloud.providers.d/rackspace.conf)

networks:
- fixed:
This 1s the private network
- private-network-1id
This is Rackspace's "PublicNet"
- 00000000-0000-0000-0000-000000000000
This 1s Rackspace's '"ServiceNet"
- 11111111-1111-1111-1111-111111111111

To get the Rackspace private network ID, go to Networking, Networks and hover over the private network name.

The order of the networks in the above code block does not map to the order of the ethernet devices on newly created
servers. Public IP will always be first (eth0) followed by servicenet (eth1) and then private networks.

Enabling the private network per above gives the option of using the private subnet for all master-minion commu-
nication, including the bootstrap install of salt-minion. To enable the minion to use the private subnet, update the
master: line in the minion: section of the providers file. To configure the master to only listen on the private subnet
IP, update the interface: line in the /etc/salt/master file to be the private subnet IP of the salt master.

25.7.15 Getting Started With Saltify

The Saltify driver is a new, experimental driver for installing Salt on existing machines (virtual or bare metal).

Dependencies

The Saltify driver has no external dependencies.

372 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Configuration

Because the Saltify driver does not use an actual cloud provider host, it has a simple provider configuration. The
only thing that is required to be set is the driver name, and any other potentially useful information, like the location
of the salt-master:

Note: This example is for /etc/salt/cloud.providers file or any file 1in
the /etc/salt/cloud.providers.d/ directory.

my-saltify-config:
minion:
master: 111.222.333.444
provider: saltify

Profiles

Saltify requires a profile to be configured for each machine that needs Salt installed. The initial profile can be set
up at /etc/salt/cloud.profiles orin the /etc/salt/cloud.profiles.d/ directory. Each profile
requires both an ssh_host and an ssh_username key parameter as well as either an key_filename or a
password.

Profile configuration example:

Jetc/salt/cloud.profiles.d/saltify.conf

salt-this-machine:
ssh_host: 12.34.56.78
ssh_username: root
key_filename: '/etc/salt/mysshkey.pem'
provider: my-saltify-config

The machine can now be **Salted" with the following command:

salt-cloud -p salt-this-machine my-machine

This will install salt on the machine specified by the cloud profile, salt-this-mach1ine, and will give the machine
the minion id of my—-mach-ine. If the command was executed on the salt-master, its Salt key will automatically be
signed on the master.

Once a salt-minion has been successfully installed on the instance, connectivity to it can be verified with Salt:

salt my-machine test.ping

Using Map Files

The settings explained in the section above may also be set in a map file. An example of how to use the Saltify driver
with a map file follows:

Jetc/salt/saltify-map

make_salty:
- my-instance-0:
ssh_host: 12.34.56.78
ssh_username: root
password: very-bad-password
- my-instance-1:

25.7. Cloud Provider Specifics 373

Salt Documentation, Release 2015.8.8

ssh_host: 44.33.22.11
ssh_username: root
password: another-bad-pass

Note: When using a cloud map with the Saltify driver, the name of the profile to use, in this case make_salty,
must be defined in a profile config. For example:

Jetc/salt/cloud.profiles.d/saltify.conf

make_salty:
provider: my-saltify-config

The machines listed in the map file can now be ""Salted" by applying the following salt map command:

salt-cloud -m /etc/salt/saltify-map

This command will install salt on the machines specified in the map and will give each machine their minion id of
my-instance-0 and my-instance-1, respectively. If the command was executed on the salt-master, its Salt
key will automatically be signed on the master.

Connectivity to the new " "Salted" instances can now be verified with Salt:

salt 'my-instance-x' test.ping

25.7.16 Getting Started With Scaleway

Scaleway is the first [aaS host worldwide to offer an ARM based cloud. It’s the ideal platform for horizontal scaling
with BareMetal SSD servers. The solution provides on demand resources: it comes with on-demand SSD storage,
movable IPs , images, security group and an Object Storage solution. https://scaleway.com

Configuration

Using Salt for Scaleway, requires an access key and an API token. API tokens are unique identifiers
associated with your Scaleway account. To retrieve your access key and API token, log-in to the Scaleway
control panel, open the pull-down menu on your account name and click on **My Credentials" link.

If you do not have API token you can create one by clicking the **Create New Token" button on the right corner.

Note: This example is for /etc/salt/cloud.providers or any file in the
/Jetc/salt/cloud.providers.d/ directory.

my-scaleway-config:
access_key: 15cf404d-4560-41b1-9a0c-21c3d5c4fflf
token: a7347ec8-5del-4024-a5e3-24b77d1ba91d
driver: scaleway

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

374 Chapter 25. Salt Cloud

https://scaleway.com

Salt Documentation, Release 2015.8.8

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ directory:

scalewa-ubuntu:
provider: my-scaleway-config
image: Ubuntu Trusty (14.04 LTS)

Images can be obtained using the —-19st-1images option for the salt-cloud command:

#salt-cloud --list-images my-scaleway-config
my-scaleway-config:

arm
creation_date:
2015-03-12T09:35:45.764477+00:00
default_bootscript:
{u'kernel': {u'dtb': u'', u'title': u'Pimouss 3.2.34-30-std', u'id': u'cfq
extra_volumes:
[]
qid:
069fd876-eb04-44ab-a9cd-47e2fa3e5309
modification_date:
2015-04-24T12:02:16.820256+00:00
name:
Ubuntu Vivid (15.04)
organization:
a283afOb-d13e-42el1-a43f-855ffbf281ab
public:
True
root_volume:
{u'name': u'distrib-ubuntu-vivid-2015-03-12_10:32-snapshot', u'id': u'a6dd

a4308-cd6f-4¢

2e63-8dee-4b

Execute a query and return all information about the nodes running on configured cloud providers using the —Q
option for the salt-cloud command:

salt-cloud -F
[INFO] salt-cloud starting

[INFO] Starting new HTTPS connection (1): api.scaleway.com
my-scaleway-config:

creation_date:
2015-06-03T08:17:38.818068+00:00
hostname:
salt-manager

25.7. Cloud Provider Specifics 375

Salt Documentation, Release 2015.8.8

Note: Additional documentation about Scaleway can be found at https://www.scaleway.com/docs.

25.7.17 Getting Started With SoftLayer

SoftLayer is a public cloud host, and baremetal hardware hosting service.

Dependencies

The SoftLayer driver for Salt Cloud requires the softlayer package, which is available at PyPI:
https://pypi.python.org/pypi/SoftLayer

This package can be installed using pip or easy_install:

pip install softlayer
easy_1install softlayer

Configuration

Set up the cloud config at /etc/salt/cloud.providers:

Note: These examples are for /Jetc/salt/cloud.providers

my-softlayer:
Set up the location of the salt master
minion:
master: saltmaster.example.com

Set the SoftlLayer access credentials (see below)
user: MYUSER1138
apikey: 'e3b68aa7lle6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9!

driver: softlayer

my-softlayer-hw:
Set up the location of the salt master
minion:
master: saltmaster.example.com
Set the SoftlLayer access credentials (see below)
user: MYUSER1138
apikey: 'e3b68aa7llebdeadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9!

driver: softlayer_hw

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the prov-ider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

376 Chapter 25. Salt Cloud

https://www.scaleway.com/docs
https://pypi.python.org/pypi/SoftLayer

Salt Documentation, Release 2015.8.8

Access Credentials

The user setting is the same user as is used to log into the SoftLayer Administration area. The apikey setting is
found inside the Admin area after logging in:

« Hover over the Account menu item.
« Click the Users link.
« Find the API Key column and click View.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles

base_softlayer_ubuntu:
provider: my-softlayer
image: UBUNTU_LATEST
cpu_number: 1
ram: 1024
disk_size: 100
local_disk: True
hourly_billing: True
domain: example.com
location: sjcO1
Optional
max_net_speed: 1000
private_vlan: 396
private_network: True
private_ssh: True
May be used _instead_of_ image
global_identifier: 320d8be5-46c0-dead-cafe-13e3c51

Most of the above items are required; optional items are specified below.

image Images to build an instance can be found using the —-1ist-images option:

salt-cloud --list-images my-softlayer

The setting used will be labeled as template.

cpu_number This is the number of CPU cores that will be used for this instance. This number may be dependent
upon the image that is used. For instance:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core):

name:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core)
template:

REDHAT_6_64

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core):

name:
Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core)

25.7. Cloud Provider Specifics 377

Salt Documentation, Release 2015.8.8

template:
REDHAT_6_64

Note that the template (meaning, the image option) for both of these is the same, but the names suggests how many
CPU cores are supported.

ram This is the amount of memory, in megabytes, that will be allocated to this instance.

disk_size The amount of disk space that will be allocated to this image, in gigabytes.

base_softlayer_ubuntu:
disk_size: 100

Using Multiple Disks

New in version 2015.8.1.

SoftLayer allows up to 5 disks to be specified for a virtual machine upon creation. Multiple disks can be specified
either as a list or a comma-delimited string. The first disk_s1ze specified in the string or list will be the first disk
size assigned to the VM.

List Example: .. code-block:: yaml
base_softlayer_ubuntu: disk_size: [*100', 20', “20']

String Example: .. code-block:: yaml
base_softlayer_ubuntu: disk_size: “100, 20, 20'

local_disk When true the disks for the computing instance will be provisioned on the host which it runs, otherwise
SAN disks will be provisioned.

hourly_billing When true the computing instance will be billed on hourly usage, otherwise it will be billed on a
monthly basis.

domain The domain name that will be used in the FQDN (Fully Qualified Domain Name) for this instance. The
domain setting will be used in conjunction with the instance name to form the FQDN.

location Images to build an instance can be found using the --list-locations option:

salt-cloud --list-location my-softlayer

max_net_speed Specifies the connection speed for the instance's network components. This setting is optional.
By default, this is set to 10.

post_uri Specifies the uri location of the script to be downloaded and run after the instance is provisioned.
New in version 2015.8.1.
Example: .. code-block:: yaml

base_softlayer_ubuntu: post_uri: “https://SOMESERVERIP:8000/myscript.sh”

378 Chapter 25. Salt Cloud

https://SOMESERVERIP:8000/myscript.sh

Salt Documentation, Release 2015.8.8

public_vlan If it is necessary for an instance to be created within a specific frontend VLAN, the ID for that VLAN
can be specified in either the provider or profile configuration.

This ID can be queried using the list_vlans function, as described below. This setting is optional.

private_vlan If it is necessary for an instance to be created within a specific backend VLAN, the ID for that VLAN
can be specified in either the provider or profile configuration.

This ID can be queried using the list_vlans function, as described below. This setting is optional.

private_network If a server is to only be used internally, meaning it does not have a public VLAN associated with
it, this value would be set to True. This setting is optional. The default is False.

private_ssh Whether to run the deploy script on the server using the public IP address or the private IP address.
If set to True, Salt Cloud will attempt to SSH into the new server using the private IP address. The default is False.
This settiong is optional.

global_identifier When creating an instance using a custom template, this option is set to the corresponding value
obtained using the list_custom_images function. This option will not be used if an image is set, and if an image is not
set, it is required.

The profile can be realized now with a salt command:

salt-cloud -p base_softlayer_ubuntu myserver

Using the above configuration, this will create myserver.example.com.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt 'myserver.example.com' test.ping

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles

base_softlayer_hw_centos:
provider: my-softlayer—-hw
Cent0S 6.0 - Minimal Install (64 bit)
image: 13963
2 X 2.0 GHz Core Bare Metal Instance - 2 GB Ram
size: 1921
500GB SATA II
hdd: 1267
San Jose 01
location: 168642
domain: example.com
Optional
vlan: 396
port_speed: 273
banwidth: 248

Most of the above items are required; optional items are specified below.

25.7. Cloud Provider Specifics 379

Salt Documentation, Release 2015.8.8

image Images to build an instance can be found using the --list-images option:

salt-cloud --list-images my-softlayer-hw

A list of id's and names will be provided. The "name will describe the operating system and architecture. The id will
be the setting to be used in the profile.

size

Sizes to build an instance can be found using the --list-sizes option:

salt-cloud --list-sizes my-softlayer-hw

A list of id's and names will be provided. The "name will describe the speed and quantity of CPU cores, and the
amount of memory that the hardware will contain. The id will be the setting to be used in the profile.

hdd

There is currently only one size of hard disk drive (HDD) that is available for hardware instances on SoftLayer:

|1267: 500GB SATA II

|

The hdd setting in the profile should be 1267. Other sizes may be added in the future.

location Locations to build an instance can be found using the --list-images option:

salt-cloud --list-locations my-softlayer-hw

A list of IDs and names will be provided. The location will describe the location in human terms. The id will be the
setting to be used in the profile.

domain The domain name that will be used in the FQDN (Fully Qualified Domain Name) for this instance. The
domain setting will be used in conjunction with the instance name to form the FQDN.

vlan

If it is necessary for an instance to be created within a specific VLAN, the ID for that VLAN can be specified

in either the provider or profile configuration.

This ID can be queried using the list_vlans function, as described below.

port_speed Specifies the speed for the instance's network port. This setting refers to an ID within the SoftLayer
API, which sets the port speed. This setting is optional. The default is 273, or, 100 Mbps Public & Private Networks.
The following settings are available:

273: 100 Mbps Public & Private Networks

274: 1 Gbps Public & Private Networks

21509: 10 Mbps Dual Public & Private Networks (up to 20 Mbps)
21513: 100 Mbps Dual Public & Private Networks (up to 200 Mbps)
2314: 1 Gbps Dual Public & Private Networks (up to 2 Gbps)

272: 10 Mbps Public & Private Networks

380

Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

bandwidth Specifies the network bandwidth available for the instance. This setting refers to an ID within the
SoftLayer API, which sets the bandwidth. This setting is optional. The default is 248, or, 5000 GB Bandwidth. The
following settings are available:

« 248: 5000 GB Bandwidth

+ 129: 6000 GB Bandwidth

+ 130: 8000 GB Bandwidth

« 131: 10000 GB Bandwidth

« 36: Unlimited Bandwidth (10 Mbps Uplink)

« 125: Unlimited Bandwidth (100 Mbps Uplink)

Actions

The following actions are currently supported by the SoftLayer Salt Cloud driver.

show_instance

This action is a thin wrapper around --full-query, which displays details on a single instance only. In an environment
with several machines, this will save a user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

Functions
The following functions are currently supported by the SoftLayer Salt Cloud driver.
list_vlans

This function lists all VLANs associated with the account, and all known data from the SoftLayer API concerning
those VLANS.

$ salt-cloud -f list_vlans my-softlayer
$ salt-cloud -f list_vlans my-softlayer-hw

The id returned in this list is necessary for the vian option when creating an instance.

list_custom_images

This function lists any custom templates associated with the account, that can be used to create a new instance.

$ salt-cloud -f list_custom_images my-softlayer

The globalldentifier returned in this list is necessary for the global_identifier option when creating an image using a
custom template.

25.7. Cloud Provider Specifics 381

Salt Documentation, Release 2015.8.8

Optional Products for SoftLayer HW

The softlayer_hw driver supports the ability to add optional products, which are supported by SoftLayer's APL These
products each have an ID associated with them, that can be passed into Salt Cloud with the optional_products option:

softlayer_hw_test:
provider: my-softlayer-hw
Cent0S 6.0 - Minimal Install (64 bit)
image: 13963
2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
size: 1921
500GB SATA II
hdd: 1267
San Jose 01
location: 168642
domain: example.com
optional_products:
MySQL for Linux
- 1id: 28
Business Continuance Insurance
- id: 104

These values can be manually obtained by looking at the source of an order page on the SoftLayer web interface. For
convenience, many of these values are listed here:

Public Secondary IP Addresses

« 22: 4 Public IP Addresses
« 23: 8 Public IP Addresses

Primary IPv6 Addresses

e 17129: 1 IPv6 Address

Public Static IPv6 Addresses

« 1481: /64 Block Static Public IPv6 Addresses

OS-Specific Addon

+ 17139: XenServer Advanced for XenServer 6.x
+ 17141: XenServer Enterprise for XenServer 6.x
« 2334: XenServer Advanced for XenServer 5.6

« 2335: XenServer Enterprise for XenServer 5.6
« 13915: Microsoft WebMatrix

« 21276: VMware vCenter 5.1 Standard

382 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Control Panel Software

« 121: cPanel/WHM with Fantastico and RVskin

« 20778: Parallels Plesk Panel 11 (Linux) 100 Domain w/ Power Pack

+ 20786: Parallels Plesk Panel 11 (Windows) 100 Domain w/ Power Pack

« 20787: Parallels Plesk Panel 11 (Linux) Unlimited Domain w/ Power Pack

« 20792: Parallels Plesk Panel 11 (Windows) Unlimited Domain w/ Power Pack

« 2340: Parallels Plesk Panel 10 (Linux) 100 Domain w/ Power Pack

« 2339: Parallels Plesk Panel 10 (Linux) Unlimited Domain w/ Power Pack

« 13704: Parallels Plesk Panel 10 (Windows) Unlimited Domain w/ Power Pack

Database Software

+ 29: MySQL 5.0 for Windows
« 28: MySQL for Linux

« 21501: Riak 1.x

» 20893: MongoDB

« 30: Microsoft SQL Server 2005 Express

« 92: Microsoft SQL Server 2005 Workgroup

« 90: Microsoft SQL Server 2005 Standard

« 94: Microsoft SQL Server 2005 Enterprise

« 1330:
» 1340:
« 1337:
o 1334:
« 1331:
o 2179:
. 2173:
. 2183:
» 2180:
« 2176:

Microsoft SQL Server 2008 Express
Microsoft SQL Server 2008 Web
Microsoft SQL Server 2008 Workgroup
Microsoft SQL Server 2008 Standard
Microsoft SQL Server 2008 Enterprise
Microsoft SQL Server 2008 Express R2
Microsoft SQL Server 2008 Web R2
Microsoft SQL Server 2008 Workgroup R2
Microsoft SQL Server 2008 Standard R2
Microsoft SQL Server 2008 Enterprise R2

Anti-Virus & Spyware Protection

e 594: McAfee VirusScan Anti-Virus - Windows

e 414: McAfee Total Protection - Windows

25.7. Cloud Provider Specifics

383

Salt Documentation, Release 2015.8.8

Insurance

« 104: Business Continuance Insurance

Monitoring

+ 55: Host Ping
+ 56: Host Ping and TCP Service Monitoring

Notification

« 57: Email and Ticket

Advanced Monitoring

« 2302: Monitoring Package - Basic
+ 2303: Monitoring Package - Advanced

« 2304: Monitoring Package - Premium Application

Response

« 58: Automated Notification
+ 59: Automated Reboot from Monitoring
« 60: 24x7x365 NOC Monitoring, Notification, and Response

Intrusion Detection & Protection

+ 413: McAfee Host Intrusion Protection w/Reporting

Hardware & Software Firewalls

411: APF Software Firewall for Linux

« 894: Microsoft Windows Firewall
+ 410: 10Mbps Hardware Firewall

+ 409: 100Mbps Hardware Firewall
« 408: 1000Mbps Hardware Firewall

25.7.18 Getting Started with VEXXHOST

VEXXHOST is a cloud computing host which provides Canadian cloud computing services which are based in Mon-
teral and use the libcloud OpenStack driver. VEXXHOST currently runs the Havana release of OpenStack. When
provisioning new instances, they automatically get a public IP and private IP address. Therefore, you do not need to
assign a floating IP to access your instance after it's booted.

384 Chapter 25. Salt Cloud

http://vexxhost.com
http://vexxhost.com/cloud-computing

Salt Documentation, Release 2015.8.8

Cloud Provider Configuration

To use the openstack driver for the VEXXHOST public cloud, you will need to set up the cloud provider configuration
file as in the example below:

/etc/salt/cloud.providers.d/vexxhost.conf: In order to use the VEXXHOST public cloud, you will
need to setup a cloud provider configuration file as in the example below which uses the OpenStack driver.

my-vexxhost-config:
Set the location of the salt-master
#
minion:
master: saltmaster.example.com

Configure VEXXHOST using the OpenStack plugin

#

identity_url: http://auth.api.thenebulacloud.com:5000/v2.0/tokens
compute_name: nova

Set the compute region:
#
compute_region: na-yul-nhsl

Configure VEXXHOST authentication credentials
#

user: your-tenant-id

password: your-api-key

tenant: your-tenant-name

keys to allow connection to the instance launched
#

ssh_key_name: yourkey

ssh_key_file: /path/to/key/yourkey.priv

driver: openstack

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the prov-ider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Authentication

All of the authentication fields that you need can be found by logging into your VEXXHOST customer center. Once
you've logged in, you will need to click on *"CloudConsole" and then click on " API Credentials".

Cloud Profile Configuration

In order to get the correct image UUID and the instance type to use in the cloud profile, you can run the following
command respectively:

salt-cloud --list-images=vexxhost-config
salt-cloud --list-sizes=vexxhost-config

25.7. Cloud Provider Specifics 385

Salt Documentation, Release 2015.8.8

Once you have that, you can go ahead and create a new cloud profile. This profile will build an Ubuntu 12.04 LTS
nb.2G instance.

/etc/salt/cloud.profiles.d/vh_ubuntul204_2G.conf:

vh_ubuntul204_2G:
provider: my-vexxhost-config
image: 4051139f-750d-4d72-8ef0-074f2ccc7eba
size: nb.2G

Provision an instance

To create an instance based on the sample profile that we created above, you can run the following salt-cloud com-
mand.

salt-cloud —-p vh_ubuntul204_2G vh_instancel

Typically, instances are provisioned in under 30 seconds on the VEXXHOST public cloud. After the instance provi-
sions, it will be set up a minion and then return all the instance information once it's complete.

Once the instance has been setup, you can test connectivity to it by running the following command:

salt vh_instancel test.ping

You can now continue to provision new instances and they will all automatically be set up as minions of the master
you've defined in the configuration file.

25.7.19 Getting Started With VMware

New in version 2015.5.4.
Author: Nitin Madhok <nmadhok@clemson.edu>

The VMware cloud module allows you to manage VMware ESX, ESXi, and vCenter.

Dependencies

The vmware module for Salt Cloud requires the pyVmom- package, which is available at PyPI:
https://pypi.python.org/pypi/pyvmomi

This package can be installed using pip or easy_install:

pip install pyvmomi
easy_install pyvmomi

Note: Version 6.0 of pyVmomi has some problems with SSL error handling on certain versions of Python. If using
version 6.0 of pyVmomi, the machine that you are running the proxy minion process from must have either Python

2.7.9 or newer This is due to an upstream dependency in pyVmomi 6.0 that is not supported in Python version 2.6 to
2.7.8. If the version of Python running the salt-cloud command is not in the supported range, you will need to install
an earlier version of pyVmomi. See Issue #29537 for more information.

386 Chapter 25. Salt Cloud

mailto:nmadhok@clemson.edu
https://pypi.python.org/pypi/pyvmomi
https://github.com/saltstack/salt/issues/29537

Salt Documentation, Release 2015.8.8

Configuration

The VMware cloud module needs the vCenter URL, username and password to be set up in the cloud configuration
at /fetc/salt/cloud.providersor /etc/salt/cloud.providers.d/vmware.conf:

my-vmware-config:
driver: vmware
user: 'DOMAIN\user'
password: 'verybadpass'
url: '10.20.30.40'

vcenteroOl:
driver: vmware
user: 'DOMAIN\user'
password: 'verybadpass'
url: 'vcenterOl.domain.com'
protocol: 'https'
port: 443

vcenter02:
driver: vmware
user: 'DOMAIN\user'
password: 'verybadpass'
url: 'vcenter02.domain.com'
protocol: 'http'
port: 80

Note: Optionally, protocol and port can be specified if the vCenter server is not using the defaults. Default is
protocol: httpsandport: 443.

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

Profiles

Setup an initial profileat /etc/salt/cloud.profilesor /etc/salt/cloud.profiles.d/vmware.conf:

vmware-centos6.5:
provider: vcentero0l
clonefrom: test-vm

Optional arguments
num_cpus: 4
memory: 8GB
devices:
cd:
CD/DVD drive 1:
device_type: datastore_iso_file
iso_path: "[nap004-1] vmimages/tools-isoimages/linux.iso"
CD/DVD drive 2:
device_type: client_device

25.7. Cloud Provider Specifics 387

Salt Documentation, Release 2015.8.8

mode: atapi

CD/DVD drive 3:
device_type: client_device
mode: passthrough

disk:
Hard disk 1:
size: 30
Hard disk 2:
size: 20
Hard disk 3:
size: 5
network:

Network adapter 1:
name: 10.20.30-400-Test
switch_type: standard
ip: 10.20.30.123
gateway: [10.20.30.110]
subnet_mask: 255.255.255.128
domain: example.com

Network adapter 2:
name: 10.30.40-500-Dev-DHCP
adapter_type: 1000
switch_type: distributed

Network adapter 3:
name: 10.40.50-600-Prod
adapter_type: vmxnet3
switch_type: distributed
ip: 10.40.50.123
gateway: [10.40.50.110]
subnet_mask: 255.255.255.128
domain: example.com

scsi:

SCSI controller 1:
type: lsilogic

SCSI controller 2:
type: lsilogic_sas
bus_sharing: virtual

SCSI controller 3:
type: paravirtual
bus_sharing: physical

domain: example.com
dns_servers:
- 123.127.255.240
- 123.127.255.241
- 123.127.255.242

If cloning from template, either resourcepool or cluster MUST be specified!
resourcepool: Resources
cluster: Prod

datastore: HUGE-DATASTORE-Cluster
folder: Development

datacenter: DC1

host: c4212n-002.domain.com
template: False

power_on: True

extra_config:

388 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

mem.hotadd: 'yes'

guestinfo.foo: bar

guestinfo.domain: foobar.com
guestinfo.customVariable: customValue

deploy: True
private_key: /root/.ssh/mykey.pem
ssh_username: cloud-user
password: veryVeryBadPassword
minion:

master: 123.127.193.105

file_map:
/path/to/local/custom/script: /path/to/remote/script
/path/to/local/file: /path/to/remote/file
/srv/salt/yum/epel.repo: /etc/yum.repos.d/epel.repo

hardware_version: 10

provider Enter the name that was specified when the cloud provider config was created.
clonefrom Enter the name of the VM/template to clone from.

num_cpus Enter the number of vCPUS that you want the VM/template to have. If not specified, the current
VM/template's vCPU count is used.

memory Enter the memory size (in MB or GB) that you want the VM/template to have. If not specified, the current
VM/template's memory size is used. Example memory: 8GB or memory: 8192MB.

devices Enter the device specifications here. Currently, the following devices can be created or reconfigured:

cd Enter the CD/DVD drive specification here. If the CD/DVD drive doesn't exist, it will be created with the
specified configuration. If the CD/DVD drive already exists, it will be reconfigured with the specifica-
tions. The following options can be specified per CD/DVD drive:

device_type Specify how the CD/DVD drive should be used. Currently supported types
are client_device and datastore_iso_file. Default is device_type:
client_device

iso_path Enter the path to the iso file present on the datastore only if device_type: data-
store_iso_file. The syntax to specify this is iso_path: "[datastoreName]
vmimages/tools-isoimages/linux.iso". 'This field is ignored if device_type:
client_device

mode Enter the mode of connection only if device_type: client_device. Currently sup-
ported modes are passthrough and atapi. This field is ignored if device_type: datas-
tore_iso_file. Defaultismode: passthrough

disk Enter the disk specification here. If the hard disk doesn't exist, it will be created with the provided size.
If the hard disk already exists, it will be expanded if the provided size is greater than the current size of

the disk.

network Enter the network adapter specification here. If the network adapter doesn't exist, a new network
adapter will be created with the specified network name, type and other configuration. If the network
adapter already exists, it will be reconfigured with the specifications. The following additional options
can be specified per network adapter (See example above):

name Enter the network name you want the network adapter to be mapped to.

adapter_type Enter the network adapter type you want to create. Currently supported types are
vmxnet, vmxnet2, vmxnet3, e1000 and e1000e. If no type is specified, by default vmxnet3

25.7. Cloud Provider Specifics 389

Salt Documentation, Release 2015.8.8

will be used.

switch_type Enter the type of switch to use. This decides whether to use a standard switch network or
a distributed virtual portgroup. Currently supported types are standard for standard portgroups
and distributed for distributed virtual portgroups.

ip Enter the static IP you want the network adapter to be mapped to. If the network specified is DHCP
enabled, you do not have to specify this.

gateway Enter the gateway for the network as a list. If the network specified is DHCP enabled, you do
not have to specify this.

subnet_mask Enter the subnet mask for the network. If the network specified is DHCP enabled, you do
not have to specify this.

domain Enter the domain to be used with the network adapter. If the network specified is DHCP enabled,
you do not have to specify this.

scsi Enter the SCSI adapter specification here. If the SCSI adapter doesn't exist, a new SCSI adapter will be
created of the specified type. If the SCSI adapter already exists, it will be reconfigured with the specifi-
cations. The following additional options can be specified per SCSI adapter:

type Enter the SCSI adapter type you want to create. Currently supported types are 1silogic, lsi-
logic_sas and paravirtual. Type must be specified when creating a new SCSI adapter.

bus_sharing Specify this if sharing of virtual disks between virtual machines is desired. The following
can be specified:

virtual Virtual disks can be shared between virtual machines on the same server.
physical Virtual disks can be shared between virtual machines on any server.
no Virtual disks cannot be shared between virtual machines.

domain Enter the global domain name to be used for DNS. If not specified and if the VM name is a FQDN, domain
is set to the domain from the VM name. Default is Loca'l.

dns_servers Enter the list of DNS servers to use in order of priority.

resourcepool Enter the name of the resourcepool to which the new virtual machine should be attached. This
determines what compute resources will be available to the clone.

Note:

« For a clone operation from a virtual machine, it will use the same resourcepool as the original virtual
machine unless specified.

« For a clone operation from a template to a virtual machine, specifying either this or cluster is required.
If both are specified, the resourcepool value will be used.

« For a clone operation to a template, this argument is ignored.

cluster Enter the name of the cluster whose resource pool the new virtual machine should be attached to.

Note:

« For a clone operation from a virtual machine, it will use the same cluster's resourcepool as the original
virtual machine unless specified.

« For a clone operation from a template to a virtual machine, specifying either this or resourcepool is
required. If both are specified, the resourcepool value will be used.

« For a clone operation to a template, this argument is ignored.

390 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

datastore Enter the name of the datastore or the datastore cluster where the virtual machine should be located
on physical storage. If not specified, the current datastore is used.

Note:

« If you specify a datastore cluster name, DRS Storage recommendation is automatically applied.

« If you specify a datastore name, DRS Storage recommendation is disabled.

folder Enter the name of the folder that will contain the new virtual machine.

Note:

« For a clone operation from a VM/template, the new VM/template will be added to the same folder that
the original VM/template belongs to unless specified.

« If both folder and datacenter are specified, the folder value will be used.

datacenter Enter the name of the datacenter that will contain the new virtual machine.

Note:

« For a clone operation from a VM/template, the new VM/template will be added to the same folder that
the original VM/template belongs to unless specified.

« If both folder and datacenter are specified, the folder value will be used.

host Enter the name of the target host where the virtual machine should be registered.

If not specified:

Note:

« If resource pool is not specified, current host is used.
« If resource pool is specified, and the target pool represents a stand-alone host, the host is used.

« Ifresource pool is specified, and the target pool represents a DRS-enabled cluster, a host selected by DRS
is used.

« If resource pool is specified and the target pool represents a cluster without DRS enabled, an InvalidAr-
gument exception be thrown.

template Specifies whether the new virtual machine should be marked as a template or not. Default is tem-
plate: False.

power_on Specifies whether the new virtual machine should be powered on or not. If template: True is set,
this field is ignored. Default is power_on: True.

extra_config Specifies the additional configuration information for the virtual machine. This describes a set
of modifications to the additional options. If the key is already present, it will be reset with the new value
provided. Otherwise, a new option is added. Keys with empty values will be removed.

deploy Specifies if salt should be installed on the newly created VM. Default is True so salt will be installed using
the bootstrap script. If template: True or power_on: False is set, this field is ignored and salt will
not be installed.

private_key Specify the path to the private key to use to be able to ssh to the VM.

ssh_username Specify the username to use in order to ssh to the VM. Default is root

25.7. Cloud Provider Specifics 391

Salt Documentation, Release 2015.8.8

password Specify a password to use in order to ssh to the VM. If private_key is specified, you do not need to
specify this.

minion Specify custom minion configuration you want the salt minion to have. A good example would be to
specify the master as the IP/DNS name of the master.

file_map Specify file/files you want to copy to the VM before the bootstrap script is run and salt is installed. A
good example of using this would be if you need to put custom repo files on the server in case your server will
be in a private network and cannot reach external networks.

hardware_version Specify the virtual hardware version for the vim/template that is supported by the host.

customization Specify whether the new virtual machine should be customized or not. If customization:
False is set, the new virtual machine will not be customized. Default is customization: True.

25.7.20 Getting Started With vSphere

Note: Deprecated since version Carbon: The vsphere cloud driver has been deprecated in favor of the vmware
cloud driver and will be removed in Salt Carbon. Please refer to Getting started with VMware instead to get started

with the configuration.

VMware vSphere is a management platform for virtual infrastructure and cloud computing.

Dependencies

The vSphere module for Salt Cloud requires the PySphere package, which is available at PyPI:
https://pypi.python.org/pypi/pysphere

This package can be installed using pip or easy_install:

pip install pysphere
easy_1install pysphere

Configuration

Set up the cloud config at /etc/salt/cloud.providers orinthe /etc/salt/cloud.providers.d/
directory:

my-vsphere-config:
driver: vsphere
Set the vSphere access credentials
user: marco
password: polo
Set the URL of your vSphere server
url: 'vsphere.example.com'

Note: Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile definitions. Cloud provider definitions now
use driver to refer to the Salt cloud module that provides the underlying functionality to connect to a cloud host,
while cloud profiles continue to use provider to refer to provider configurations that you define.

392 Chapter 25. Salt Cloud

https://pypi.python.org/pypi/pysphere

Salt Documentation, Release 2015.8.8

Profiles

Cloud Profiles

vSphere uses a Managed Object Reference to identify objects located in vCenter. The MOR ID's are used when
configuring a vSphere cloud profile. Use the following reference when locating the MOR's for the cloud profile.

http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalld=1017126&sliceld=1&docTypelD=D

Set up an initial profile at /etc/salt/cloud.profilesorinthe /etc/salt/cloud.profiles.d direc-
tory:

vsphere-centos:
provider: my-vsphere-config
image: centos
Optional
datastore: datastore-15
resourcepool: resgroup-8
folder: salt-cloud
host: host-9
template: False

provider Enter the name that was specified when the cloud provider profile was created.

image Images available to build an instance can be found using the --list-images option:

salt-cloud --list-images my-vsphere-config

datastore The MOR of the datastore where the virtual machine should be located. If not specified, the current
datastore is used.

resourcepool The MOR of the resourcepool to be used for the new vm. If not set, it will use the same resourcepool
as the original vm.

folder Name of the folder that will contain the new VM. If not set, the VM will be added to the folder the original
VM belongs to.

host The MOR of the host where the vm should be registered.
If not specified:
« if resourcepool is not specified, the current host is used.
« if resourcepool is specified, and the target pool represents a stand-alone host, the host is used.

« if resourcepool is specified, and the target pool represents a DRS-enabled cluster, a host se-
lected by DRS is used.

« if resourcepool is specified, and the target pool represents a cluster without DRS enabled, an
InvalidArgument exception will be thrown.

template Specifies whether or not the new virtual machine should be marked as a template. Default is False.

25.7. Cloud Provider Specifics 393

http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1017126&sliceId=1&docTypeID=DT_KB_1_1&dialogID=520386078&stateId=1%200%20520388386

Salt Documentation, Release 2015.8.8

25.8 Miscellaneous Options

25.8.1 Miscellaneous Salt Cloud Options

This page describes various miscellaneous options available in Salt Cloud

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to them, but salt-bootstrap has been
extended quite a bit, and this may be necessary. script_args can be specified in either the profile or the map file, to
pass arguments to the deploy script:

ec2-amazon:
provider: my-ec2-config
image: ami-1624987f
size: tl.micro
ssh_username: ec2-user
script: bootstrap-salt
script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

script_args: | head

Selecting the File Transport

By default, Salt Cloud uses SFTP to transfer files to Linux hosts. However, if SFTP is not available, or specific SCP
functionality is needed, Salt Cloud can be configured to use SCP instead.

file_transport: sftp
file_transport: scp

Sync After Install

Salt allows users to create custom modules, grains, and states which can be synchronised to minions to extend Salt
with further functionality.

This option will inform Salt Cloud to synchronise your custom modules, grains, states or all these to the minion just
after it has been created. For this to happen, the following line needs to be added to the main cloud configuration
file:

sync_after_install: all

The available options for this setting are:

modules
grains
states
all

394 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Setting Up New Salt Masters

It has become increasingly common for users to set up multi-hierarchal infrastructures using Salt Cloud. This some-
times involves setting up an instance to be a master in addition to a minion. With that in mind, you can now lay
down master configuration on a machine by specifying master options in the profile or map file.

make_master: True

This will cause Salt Cloud to generate master keys for the instance, and tell salt-bootstrap to install the salt-master
package, in addition to the salt-minion package.

The default master configuration is usually appropriate for most users, and will not be changed unless specific master
configuration has been added to the profile or map:

master:
user: root
interface: 0.0.0.0

Setting Up a Salt Syndic with Salt Cloud

In addition to setting up new Salt Masters, syndic’s can also be provisioned using Salt Cloud. In order to set up a Salt
Syndic via Salt Cloud, a Salt Master needs to be installed on the new machine and a master configuration file needs
to be set up using the ' “make_master" setting. This setting can be defined either in a profile config file or in a map
file:

make_master: True

To install the Salt Syndic, the only other specification that needs to be configured is the synd-ic_master key to
specify the location of the master that the syndic will be reporting to. This modification needs to be placed in the
master setting, which can be configured either in the profile, provider, or /etc/salt/cloud config file:

master:
syndic_master: 123.456.789 # may be either an IP address or a hostname

Many other Salt Syndic configuration settings and specifications can be passed through to the new syndic machine
via the master configuration setting. See the Salt Syndic documentation for more information.

SSH Port

By default ssh port is set to port 22. If you want to use a custom port in provider, profile, or map blocks use ssh_port
option.

New in version 2015.5.0.

ssh_port: 2222

Delete SSH Keys

When Salt Cloud deploys an instance, the SSH pub key for the instance is added to the known_hosts file for the user
that ran the salt-cloud command. When an instance is deployed, a cloud host generally recycles the IP address for
the instance. When Salt Cloud attempts to deploy an instance using a recycled IP address that has previously been
accessed from the same machine, the old key in the known_hosts file will cause a conflict.

In order to mitigate this issue, Salt Cloud can be configured to remove old keys from the known_hosts file when
destroying the node. In order to do this, the following line needs to be added to the main cloud configuration file:

25.8. Miscellaneous Options 395

Salt Documentation, Release 2015.8.8

delete_sshkeys: True

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for salt-bootstrap to put in place. After the
script has run, they are deleted. To keep these files around (mostly for debugging purposes), the --keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp ‘

For those wondering why /tmp/ was used instead of /root/, this had to be done for images which require the use of
sudo, and therefore do not allow remote root logins, even for file transfers (which makes /root/ unavailable).

Hide Output From Minion Install

By default Salt Cloud will stream the output from the minion deploy script directly to STDOUT. Although this can
been very useful, in certain cases you may wish to switch this off. The following config option is there to enable or
disable this output:

display_ssh_output: False

Connection Timeout
There are several stages when deploying Salt where Salt Cloud needs to wait for something to happen. The VM
getting it's IP address, the VM's SSH port is available, etc.

If you find that the Salt Cloud defaults are not enough and your deployment fails because Salt Cloud did not wait
log enough, there are some settings you can tweak.

Note

All settings should be provided in lowercase All values should be provided in seconds

You can tweak these settings globally, per cloud provider, or event per profile definition.

wait_for_ip_timeout

The amount of time Salt Cloud should wait for a VM to start and get an IP back from the cloud host. Default: varies
by cloud provider (between 5 and 25 minutes)

wait_for_ip_interval

The amount of time Salt Cloud should sleep while querying for the VM's IP. Default: varies by cloud provider (
between .5 and 10 seconds)

ssh_connect_timeout

The amount of time Salt Cloud should wait for a successful SSH connection to the VM. Default: varies by cloud
provider (between 5 and 15 minutes)

396 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

wait_for_passwd_timeout

The amount of time until an ssh connection can be established via password or ssh key. Default: varies by cloud
provider (mostly 15 seconds)

wait_for_passwd_maxtries

The number of attempts to connect to the VM until we abandon. Default: 15 attempts

wait_for_fun_timeout

Some cloud drivers check for an available IP or a successful SSH connection using a function, namely, SoftLayer, and
SoftLayer-HW. So, the amount of time Salt Cloud should retry such functions before failing. Default: 15 minutes.

wait_for_spot_timeout

The amount of time Salt Cloud should wait before an EC2 Spot instance is available. This setting is only available
for the EC2 cloud driver. Default: 10 minutes

Salt Cloud Cache

Salt Cloud can maintain a cache of node data, for supported providers. The following options manage this function-
ality.

update_cachedir

On supported cloud providers, whether or not to maintain a cache of nodes re-
turned from a --full-query. The data will be stored in msgpack format wunder
<SALT_CACHEDIR>/cloud/active/<DRIVER>/<PROVIDER>/<NODE_NAME>.p. This setting can
be True or False.

diff_cache_events

When the cloud cachedir is being managed, if differences are encountered between the data that is returned live
from the cloud host and the data in the cache, fire events which describe the changes. This setting can be True or
False.

Some of these events will contain data which describe a node. Because some of the fields returned may contain
sensitive data, the cache_event_strip_fields configuration option exists to strip those fields from the event
return.

cache_event_strip_fields:
- password
- priv_key

The following are events that can be fired based on this data.

salt/cloud/minionid/cache_node_new A new node was found on the cloud host which was not listed in the cloud
cachedir. A dict describing the new node will be contained in the event.

25.8. Miscellaneous Options 397

Salt Documentation, Release 2015.8.8

salt/cloud/minionid/cache_node_missing A node that was previously listed in the cloud cachedir is no longer
available on the cloud host.

salt/cloud/minionid/cache_node_diff One or more pieces of data in the cloud cachedir has changed on the cloud
host. A dict containing both the old and the new data will be contained in the event.

SSH Known Hosts

Normally when bootstrapping a VM, salt-cloud will ignore the SSH host key. This is because it does not know what
the host key is before starting (because it doesn't exist yet). If strict host key checking is turned on without the key
in the known_hosts file, then the host will never be available, and cannot be bootstrapped.

If a provider is able to determine the host key before trying to bootstrap it, that provider's driver can add it to the
known_hosts file, and then turn on strict host key checking. This can be set up in the main cloud configuration
file (normally /etc/salt/cloud) or in the provider-specific configuration file:

‘ known_hosts_file: /path/to/.ssh/known_hosts

If this is not set, it will default to /dev/null, and strict host key checking will be turned off.

It is highly recommended that this option is not set, unless the user has verified that the provider supports this
functionality, and that the image being used is capable of providing the necessary information. At this time, only
the EC2 driver supports this functionality.

SSH Agent

New in version 2015.5.0.

If the ssh key is not stored on the server salt-cloud is being run on, set ssh_agent, and salt-cloud will use the forwarded
ssh-agent to authenticate.

ssh_agent: True

File Map Upload

New in version 2014.7.0.

The file_map option allows an arbitrary group of files to be uploaded to the target system before running the
deploy script. This functionality requires a provider uses salt.utils.cloud.bootstrap(), which is currently limited to
the ec2, gce, openstack and nova drivers.

The file_map can be configured globally in /etc/salt/cloud, or in any cloud provider or profile file. For
example, to upload an extra package or a custom deploy script, a cloud profile using file_map might look like:

ubuntul4:

provider: ec2-config

image: ami-98aalcf0

size: tl.micro

ssh_username: root

securitygroup: default

file_map:
/local/path/to/custom/script: /remote/path/to/use/custom/script
/local/path/to/package: /remote/path/to/store/package

398 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

25.9 Troubleshooting Steps

25.9.1 Troubleshooting Salt Cloud

This page describes various steps for troubleshooting problems that may arise while using Salt Cloud.

Virtual Machines Are Created, But Do Not Respond

Are TCP ports 4505 and 4506 open on the master? This is easy to overlook on new masters. Information on how to
open firewall ports on various platforms can be found here.

Generic Troubleshooting Steps

This section describes a set of instructions that are useful to a large number of situations, and are likely to solve most
issues that arise.

Version Compatibility

One of the most common issues that Salt Cloud users run into is import errors. These are often caused by version
compatibility issues with Salt.

Salt 0.16.x works with Salt Cloud 0.8.9 or greater.
Salt 0.17.x requires Salt Cloud 0.8.11.

Releases after 0.17.x (0.18 or greater) should not encounter issues as Salt Cloud has been merged into Salt itself.

Debug Mode

Frequently, running Salt Cloud in debug mode will reveal information about a deployment which would otherwise
not be obvious:

salt-cloud -p myprofile myinstance -1 debug

Keep in mind that a number of messages will appear that look at first like errors, but are in fact intended to give devel-
opers factual information to assist in debugging. A number of messages that appear will be for cloud providers that
you do not have configured; in these cases, the message usually is intended to confirm that they are not configured.

Salt Bootstrap

By default, Salt Cloud uses the Salt Bootstrap script to provision instances:

This script is packaged with Salt Cloud, but may be updated without updating the Salt package:

salt-cloud -u

The Bootstrap Log

If the default deploy script was used, there should be a file in the /tmp/ directory called bootstrap-salt. log.
This file contains the full output from the deployment, including any errors that may have occurred.

25.9. Troubleshooting Steps 399

Salt Documentation, Release 2015.8.8

Keeping Temp Files

Salt Cloud uploads minion-specific files to instances once they are available via SSH, and then executes a deploy
script to put them into the correct place and install Salt. The ——keep—tmp option will instruct Salt Cloud not to
remove those files when finished with them, so that the user may inspect them for problems:

salt-cloud -p myprofile myinstance --keep-tmp

By default, Salt Cloud will create a directory on the target instance called /tmp/.saltcloud/. This directory
should be owned by the user that is to execute the deploy script, and should have permissions of 0700.

Most cloud hosts are configured to use root as the default initial user for deployment, and as such, this directory
and all files in it should be owned by the root user.

The /tmp/.saltcloud/ directory should the following files:
« A deploy. sh script. This script should have permissions of 0755.

« A .pemand . pub key named after the minion. The . pem file should have permissions of @600. Ensure that
the . pem and . pub files have been properly copied to the /etc/salt/pki/minion/ directory.

« A file called minion. This file should have been copied to the /etc/salt/ directory.
« Optionally, a file called grains. This file, if present, should have been copied to the /etc/salt/ directory.

Unprivileged Primary Users

Some cloud hosts, most notably EC2, are configured with a different primary user. Some common examples are
ec2-user, ubuntu, fedora, and bitnami. In these cases, the /tmp/.saltcloud/ directory and all files in
it should be owned by this user.

Some cloud hosts, such as EC2, are configured to not require these users to provide a password when using the sudo
command. Because it is more secure to require sudo users to provide a password, other hosts are configured that
way.

If this instance is required to provide a password, it needs to be configured in Salt Cloud. A password for sudo to
use may be added to either the provider configuration or the profile configuration:

sudo_password: mypassword

/tmp/ is Mounted as noexec

It is more secure to mount the /tmp/ directory with a noexec option. This is uncommon on most cloud hosts,
but very common in private environments. To see if the /tmp/ directory is mounted this way, run the following
command:

’mount | grep tmp

The if the output of this command includes a line that looks like this, then the /tmp/ directory is mounted as
noexec:

‘tmpfs on /tmp type tmpfs (rw,noexec)

If this is the case, then the deploy_command will need to be changed in order to run the deploy script through
the sh command, rather than trying to execute it directly. This may be specified in either the provider or the profile
config:

400 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

’deploy_command: sh /tmp/.saltcloud/deploy.sh

Please note that by default, Salt Cloud will place its files in a directory called /tmp/.saltcloud/. This may be
also be changed in the provider or profile configuration:

‘ tmp_dir: /tmp/.saltcloud/

If this directory is changed, then the deploy_command need to be changed in order to reflect the tmp_d-ir
configuration.

Executing the Deploy Script Manually

If all of the files needed for deployment were successfully uploaded to the correct locations, and contain the correct
permissions and ownerships, the deploy script may be executed manually in order to check for other issues:

cd /tmp/.saltcloud/
./deploy.sh

25.10 Extending Salt Cloud

25.10.1 Writing Cloud Driver Modules
Salt Cloud runs on a module system similar to the main Salt project. The modules inside saltcloud exist in the
salt/cloud/clouds directory of the salt source.

There are two basic types of cloud modules. If a cloud host is supported by libcloud, then using it is the fastest route
to getting a module written. The Apache Libcloud project is located at:

http://libcloud.apache.org/

Not every cloud host is supported by libcloud. Additionally, not every feature in a supported cloud host is necessarily
supported by libcloud. In either of these cases, a module can be created which does not rely on libcloud.

All Driver Modules

The following functions are required by all driver modules, whether or not they are based on libcloud.

The __virtual__() Function

This function determines whether or not to make this cloud module available upon execution. Most often, it uses
get_configured_provider () to determine if the necessary configuration has been set up. It may also check
for necessary imports, to decide whether to load the module. In most cases, it will return a True or Fa'lse value.
If the name of the driver used does not match the filename, then that name should be returned instead of True. An
example of this may be seen in the Azure module:

https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/msazure.py

The get_configured_provider() Function

This function uses config.is_provider_configured() to determine wither all required information for
this driver has been configured. The last value in the list of required settings should be followed by a comma.

25.10. Extending Salt Cloud 401

http://libcloud.apache.org/
https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/msazure.py

Salt Documentation, Release 2015.8.8

Libcloud Based Modules

Writing a cloud module based on libcloud has two major advantages. First of all, much of the work has already been
done by the libcloud project. Second, most of the functions necessary to Salt have already been added to the Salt
Cloud project.

The create() Function

The most important function that does need to be manually written is the create () function. This is what is used
to request a virtual machine to be created by the cloud host, wait for it to become available, and then (optionally)
log in and install Salt on it.

A good example to follow for writing a cloud driver module based on libcloud is the module provided for Linode:
https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/linode.py
The basic flow of a create () function is as follows:

« Send a request to the cloud host to create a virtual machine.

+ Wait for the virtual machine to become available.

« Generate kwargs to be used to deploy Salt.

« Log into the virtual machine and deploy Salt.

« Return a data structure that describes the newly-created virtual machine.

At various points throughout this function, events may be fired on the Salt event bus. Four of these events, which
are described below, are required. Other events may be added by the user, where appropriate.

When the create () function is called, it is passed a data structure called vm_. This dict contains a composite of
information describing the virtual machine to be created. A dict called __opts__ is also provided by Salt, which
contains the options used to run Salt Cloud, as well as a set of configuration and environment variables.

The first thing the create () function must do is fire an event stating that it has started the create process. This
event is tagged salt/cloud/<vm name>/creating. The payload contains the names of the VM, profile, and
provider.

A set of kwargs is then usually created, to describe the parameters required by the cloud host to request the virtual
machine.

An event is then fired to state that a virtual machine is about to be requested. It is tagged as salt/cloud/<vm
name>/requesting. The payload contains most or all of the parameters that will be sent to the cloud host. Any
private information (such as passwords) should not be sent in the event.

After a request is made, a set of deploy kwargs will be generated. These will be used to install Salt on the target
machine. Windows options are supported at this point, and should be generated, even if the cloud host does not
currently support Windows. This will save time in the future if the host does eventually decide to support Windows.

An event is then fired to state that the deploy process is about to begin. This event is tagged salt/cloud/<vm
name>/deploying. The payload for the event will contain a set of deploy kwargs, useful for debugging purposed.
Any private data, including passwords and keys (including public keys) should be stripped from the deploy kwargs
before the event is fired.

If any Windows options have been passed in, the salt.utils.cloud.deploy_windows() function
will be called. Otherwise, it will be assumed that the target is a Linux or Unix machine, and the
salt.utils.cloud.deploy_script() will be called.

Both of these functions will wait for the target machine to become available, then the necessary port to log in, then a
successful login that can be used to install Salt. Minion configuration and keys will then be uploaded to a temporary

402 Chapter 25. Salt Cloud

https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/linode.py

Salt Documentation, Release 2015.8.8

directory on the target by the appropriate function. On a Windows target, the Windows Minion Installer will be run
in silent mode. On a Linux/Unix target, a deploy script (bootstrap—-salt. sh, by default) will be run, which will
auto-detect the operating system, and install Salt using its native package manager. These do not need to be handled
by the developer in the cloud module.

The salt.utils.cloud.validate_windows_cred() function has been extended to take the number
of retries and retry_delay parameters in case a specific cloud host has a delay between providing the Win-
dows credentials and the credentials being available for use. In their create() function, or as a a sub-
function called during the creation process, developers should use the win_deploy_auth_retries and
win_deploy_auth_retry_delay parameters from the provider configuration to allow the end-user the ability
to customize the number of tries and delay between tries for their particular host.

After the appropriate deploy function completes, a final event is fired which describes the virtual machine that has
just been created. This event is tagged salt/cloud/<vm name>/created. The payload contains the names of
the VM, profile, and provider.

Finally, a dict (queried from the provider) which describes the new virtual machine is returned to the user. Because
this data is not fired on the event bus it can, and should, return any passwords that were returned by the cloud
host. In some cases (for example, Rackspace), this is the only time that the password can be queried by the user;
post-creation queries may not contain password information (depending upon the host).

The libcloudfuncs Functions

A number of other functions are required for all cloud hosts. However, with libcloud-based modules, these are all
provided for free by the libcloudfuncs library. The following two lines set up the imports:

from salt.cloud.libcloudfuncs import x* # pylint: disable=W0614,W0401
from salt.utils import namespaced_function

And then a series of declarations will make the necessary functions available within the cloud module.

get_size = namespaced_function(get_size, globals())

get_1image = namespaced_function(get_image, globals())
avail_locations = namespaced_function(avail_locations, globals())
avail_images = namespaced_function(avail_images, globals())
avail_sizes = namespaced_function(avail_sizes, globals())

script = namespaced_function(script, globals())

destroy = namespaced_function(destroy, globals())

list_nodes = namespaced_function(list_nodes, globals())
list_nodes_full = namespaced_function(list_nodes_full, globals())
list_nodes_select = namespaced_function(list_nodes_select, globals())
show_instance = namespaced_function(show_instance, globals())

If necessary, these functions may be replaced by removing the appropriate declaration line, and then adding the
function as normal.

These functions are required for all cloud modules, and are described in detail in the next section.

Non-Libcloud Based Modules

In some cases, using libcloud is not an option. This may be because libcloud has not yet included the necessary
driver itself, or it may be that the driver that is included with libcloud does not contain all of the necessary features
required by the developer. When this is the case, some or all of the functions in 1ibcloudfuncs may be replaced.
If they are all replaced, the libcloud imports should be absent from the Salt Cloud module.

A good example of a non-libcloud driver is the DigitalOcean driver:

25.10. Extending Salt Cloud 403

Salt Documentation, Release 2015.8.8

https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/digital_ocean.py

The create() Function

The create () function must be created as described in the libcloud-based module documentation.

The get_size() Function

This function is only necessary for libcloud-based modules, and does not need to exist otherwise.

The get_image() Function

This function is only necessary for libcloud-based modules, and does not need to exist otherwise.

The avail_locations() Function

This function returns a list of locations available, if the cloud host uses multiple data centers. It is not necessary if
the cloud host uses only one data center. It is normally called using the -—1ist-locations option.

salt-cloud --list-locations my-cloud-provider

The avail_images() Function

This function returns a list of images available for this cloud provider. There are not currently any known cloud
providers that do not provide this functionality, though they may refer to images by a different name (for example,
*“templates"). It is normally called using the ——1ist-1images option.

salt-cloud --list-images my-cloud-provider

The avail_sizes() Function

This function returns a list of sizes available for this cloud provider. Generally, this refers to a combination of RAM,
CPU, and/or disk space. This functionality may not be present on some cloud providers. For example, the Parallels
module breaks down RAM, CPU, and disk space into separate options, whereas in other providers, these options are
baked into the image. It is normally called using the ——1ist-sizes option.

salt-cloud --1list-sizes my-cloud-provider

The script() Function

This function builds the deploy script to be used on the remote machine. It is likely to be moved into the
salt.utils.cloud library in the near future, as it is very generic and can usually be copied wholesale from
another module. An excellent example is in the Azure driver.

404 Chapter 25. Salt Cloud

https://github.com/saltstack/salt/tree/develop/salt/cloud/clouds/digital_ocean.py

Salt Documentation, Release 2015.8.8

The destroy() Function

This function irreversibly destroys a virtual machine on the cloud provider. Before doing so, it should fire an event on
the Salt event bus. The tag for this event is salt/cloud/<vm name>/destroying. Once the virtual machine
has been destroyed, another event is fired. The tag for that event is salt/cloud/<vm name>/destroyed.

This function is normally called with the —d options:

salt-cloud -d myinstance

The list_nodes() Function

This function returns a list of nodes available on this cloud provider, using the following fields:
« id (str)
« image (str)

. size (str)

state (str)

private_ips (list)

public_ips (list)

No other fields should be returned in this function, and all of these fields should be returned, even if empty. The
private_ips and public_ips fields should always be of a list type, even if empty, and the other fields should always be
of a str type. This function is normally called with the —Q option:

salt-cloud -Q

The list_nodes_full() Function

All information available about all nodes should be returned in this function. The fields in the list_nodes() function
should also be returned, even if they would not normally be provided by the cloud provider. This is because some
functions both within Salt and 3rd party will break if an expected field is not present. This function is normally called
with the —F option:

salt-cloud -F

The list_nodes_select() Function

This function returns only the fields specified in the query.selection optionin /etc/salt/cloud. Because
this function is so generic, all of the heavy lifting has been moved into the salt.utils.cloud library.

A function to call 1ist_nodes_select() still needs to be present. In general, the following code can be used
as-is:

def list_nodes_select(call=None):

rr

Return a list of the VMs that are on the provider, with select fields

rr

return salt.utils.cloud.list_nodes_select(
list_nodes_full('function'), __opts__['query.selection'], call,

)

25.10. Extending Salt Cloud 405

Salt Documentation, Release 2015.8.8

However, depending on the cloud provider, additional variables may be required. For instance, some modules use
a conn object, or may need to pass other options into List_nodes_full(). In this case, be sure to update the
function appropriately:

def list_nodes_select(conn=None, call=None):

rr

Return a list of the VMs that are on the provider, with select fields
rr
if not conn:

conn = get_conn() # pylint: disable=E0602

return salt.utils.cloud.list_nodes_select(
list_nodes_full(conn, 'function'),
__opts__['query.selection'],
call,

)

This function is normally called with the —S option:

‘ salt-cloud -S

The show_instance() Function

This function is used to display all of the information about a single node that is available from the cloud provider.
The simplest way to provide this is usually to call 1ist_nodes_full(), and return just the data for the requested
node. It is normally called as an action:

salt-cloud -a show_instance myinstance

Actions and Functions

Extra functionality may be added to a cloud provider in the form of an ——action or a -=—function. Actions are
performed against a cloud instance/virtual machine, and functions are performed against a cloud provider.

Actions

Actions are calls that are performed against a specific instance or virtual machine. The show_instance action
should be available in all cloud modules. Actions are normally called with the —a option:

salt-cloud -a show_instance myinstance

Actions must accept a name as a first argument, may optionally support any number of kwargs as appropriate, and
must accept an argument of ca'll, with a default of None.

Before performing any other work, an action should normally verify that it has been called correctly. It may then
perform the desired feature, and return useful information to the user. A basic action looks like:

def show_instance(name, call=None):

rri

Show the details from EC2 concerning an AMI
rr
if call != 'action':
raise SaltCloudSystemExit(
'The show_instance action must be called with -a or --action.'

)

406 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

return _get_node(name)

Please note that generic kwargs, if used, are passed through to actions as kwargs and not *xkwargs. An example
of this is seen in the Functions section.

Functions

Functions are called that are performed against a specific cloud provider. An optional function that is often useful is
show_1image, which describes an image in detail. Functions are normally called with the —f option:

salt-cloud -f show_image my-cloud-provider image='Ubuntu 13.10 64-bit'

A function may accept any number of kwargs as appropriate, and must accept an argument of call with a default
of None.

Before performing any other work, a function should normally verify that it has been called correctly. It may then
perform the desired feature, and return useful information to the user. A basic function looks like:

def show_image(kwargs, call=None):

rr

Show the details from EC2 concerning an AMI
rr
if call != 'function':
raise SaltCloudSystemExit(
'The show_image action must be called with -f or --function.'

)

params = {'ImageId.l': kwargs['image'],
"Action': 'DescribeImages'}

result = query(params)

log.info(result)

return result

Take note that generic kwargs are passed through to functions as kwargs and not xxkwargs.

25.10.2 Cloud deployment scripts

Salt Cloud works primarily by executing a script on the virtual machines as soon as they become available. The
script that is executed is referenced in the cloud profile as the script. In older versions, this was the 0s argument.
This was changed in 0.8.2.

A number of legacy scripts exist in the deploy directory in the saltcloud source tree. The preferred method is currently
to use the salt-bootstrap script. A stable version is included with each release tarball starting with 0.8.4. The most
updated version can be found at:

https://github.com/saltstack/salt-bootstrap
Note that, somewhat counter-intuitively, this script is referenced as bootstrap-salt in the configuration.

You can specify a deploy script in the cloud configuration file (/etc/salt/cloud by default):

script: bootstrap-salt

Or in a provider:

25.10. Extending Salt Cloud 407

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2015.8.8

my-provider:
snip. ..
script: bootstrap-salt

Or in a profile:

my-profile:
provider: my-provider
snip. ..
script: bootstrap-salt

If you do not specify a script argument in your cloud configuration file, provider configuration or profile configura-
tion, the " “bootstrap-salt" script will be used by default.

Other Generic Deploy Scripts

If you want to be assured of always using the latest Salt Bootstrap script, there are a few generic templates available
in the deploy directory of your saltcloud source tree:

curl-bootstrap
curl-bootstrap-git
python-bootstrap
wget-bootstrap
wget-bootstrap-git

These are example scripts which were designed to be customized, adapted, and refit to meet your needs. One impor-
tant use of them is to pass options to the salt-bootstrap script, such as updating to specific git tags.

Custom Deploy Scripts

If the Salt Bootstrap script does not meet your needs, you may write your own. The script should be written in shell
and is a Jinja template. Deploy scripts need to execute a number of functions to do a complete salt setup. These
functions include:

1. Install the salt minion. If this can be done via system packages this method is HIGHLY preferred.

2. Add the salt minion keys before the minion is started for the first time. The minion keys are available as strings
that can be copied into place in the Jinja template under the dict named *“vm".

3. Start the salt-minion daemon and enable it at startup time.

4. Set up the minion configuration file from the *“minion" data available in the Jinja template.
A good, well commented example of this process is the Fedora deployment script:
https://github.com/saltstack/salt-cloud/blob/master/saltcloud/deploy/Fedora.sh

A number of legacy deploy scripts are included with the release tarball. None of them are as functional or complete
as Salt Bootstrap, and are still included for academic purposes.

Custom deploy scripts are picked up from /etc/salt/cloud.deploy.d by default, but you can change the
location of deploy scripts with the cloud configuration deploy_scripts_search_path. Additionally, if your
deploy script has the extension . sh, you can leave out the extension in your configuration.

For example, if your custom deploy script is located in /etc/salt/cloud.deploy.d/my_deploy.sh, you
could specify it in a cloud profile like this:

408 Chapter 25. Salt Cloud

https://github.com/saltstack/salt-cloud/blob/master/saltcloud/deploy/Fedora.sh

Salt Documentation, Release 2015.8.8

my-profile:
provider: my-provider
snip. ..
script: my_deploy

You're also free to use the full path to the script if you like. Using full paths, your script doesn't have to live inside
/etc/salt/cloud.deploy.d or whatever you've configured with deploy_scripts_search_path.

Post-Deploy Commands

Once a minion has been deployed, it has the option to run a salt command. Normally, this would be the
state.apply, which would finish provisioning the VM. Another common option (for testing) is to use
test.ping. This is configured in the main cloud config file:

start_action: state.apply

This is currently considered to be experimental functionality, and may not work well with all cloud hosts. If you
experience problems with Salt Cloud hanging after Salt is deployed, consider using Startup States instead:

http://docs.saltstack.com/ref/states/startup.html

Skipping the Deploy Script

For whatever reason, you may want to skip the deploy script altogether. This results in a VM being spun up much
faster, with absolutely no configuration. This can be set from the command line:

‘salt—cloud --no-deploy -p micro_aws my_instance

Or it can be set from the main cloud config file:

‘deploy: False

Or it can be set from the provider's configuration:

RACKSPACE.user: example_user
RACKSPACE.apikey: 123984bjjas87034
RACKSPACE.deploy: False

Or even on the VM's profile settings:

ubuntu_aws:
provider: my-ec2-config
image: ami-7e2da54e
size: tl.micro
deploy: False

The default for deploy is True.

In the profile, you may also set the script option to None:

script: None

This is the slowest option, since it still uploads the None deploy script and executes it.

25.10. Extending Salt Cloud 409

http://docs.saltstack.com/ref/states/startup.html

Salt Documentation, Release 2015.8.8

Updating Salt Bootstrap

Salt Bootstrap can be updated automatically with salt-cloud:

salt-cloud -u
salt-cloud --update-bootstrap

Bear in mind that this updates to the latest stable version from:
https://bootstrap.saltstack.com/stable/bootstrap-salt.sh

To update Salt Bootstrap script to the develop version, run the following command on the Salt minion host with
salt-cloud installed:

’salt—call config.gather_bootstrap_script 'https://bootstrap.saltstack.com/develop/boots#rap—salt.sh'

Or just download the file manually:

’curl -L 'https://bootstrap.saltstack.com/develop' > /etc/salt/cloud.deploy.d/bootstrap—#alt.sh

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for salt-bootstrap to put in place. After the
script has run, they are deleted. To keep these files around (mostly for debugging purposes), the --keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp ‘

For those wondering why /tmp/ was used instead of /root/, this had to be done for images which require the use of
sudo, and therefore do not allow remote root logins, even for file transfers (which makes /root/ unavailable).

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to them, but salt-bootstrap has been
extended quite a bit, and this may be necessary. script_args can be specified in either the profile or the map file, to
pass arguments to the deploy script:

aws-amazon:
provider: my-ec2-config
image: ami-1624987f
size: tl.micro
ssh_username: ec2-user
script: bootstrap-salt
script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

‘script_args: | head

25.11 Using Salt Cloud from Salt

25.11.1 Using the Salt Modules for Cloud

In addition to the salt-cloud command, Salt Cloud can be called from Salt, in a variety of different ways. Most
users will be interested in either the execution module or the state module, but it is also possible to call Salt Cloud

410 Chapter 25. Salt Cloud

https://bootstrap.saltstack.com/stable/bootstrap-salt.sh

Salt Documentation, Release 2015.8.8

as a runner.

Because the actual work will be performed on a remote minion, the normal Salt Cloud configuration must exist
on any target minion that needs to execute a Salt Cloud command. Because Salt Cloud now supports breaking
out configuration into individual files, the configuration is easily managed using Salt's own file.managed state
function. For example, the following directories allow this configuration to be managed easily:

/etc/salt/cloud.providers.d/
/etc/salt/cloud.profiles.d/

Minion Keys

Keep in mind that when creating minions, Salt Cloud will create public and private minion keys, upload them to the
minion, and place the public key on the machine that created the minion. It will not attempt to place any public
minion keys on the master, unless the minion which was used to create the instance is also the Salt Master. This
is because granting arbitrary minions access to modify keys on the master is a serious security risk, and must be
avoided.

Execution Module

The cloud module is available to use from the command line. At the moment, almost every standard Salt Cloud
feature is available to use. The following commands are available:

list_images

This command is designed to show images that are available to be used to create an instance using Salt Cloud. In
general they are used in the creation of profiles, but may also be used to create an instance directly (see below).
Listing images requires a provider to be configured, and specified:

salt myminion cloud.list_images my-cloud-provider

list_sizes

This command is designed to show sizes that are available to be used to create an instance using Salt Cloud. In
general they are used in the creation of profiles, but may also be used to create an instance directly (see below). This
command is not available for all cloud providers; see the provider-specific documentation for details. Listing sizes
requires a provider to be configured, and specified:

salt myminion cloud.list_sizes my-cloud-provider

list_locations

This command is designed to show locations that are available to be used to create an instance using Salt Cloud.
In general they are used in the creation of profiles, but may also be used to create an instance directly (see below).
This command is not available for all cloud providers; see the provider-specific documentation for details. Listing
locations requires a provider to be configured, and specified:

salt myminion cloud.list_locations my-cloud-provider

25.11. Using Salt Cloud from Salt 411

Salt Documentation, Release 2015.8.8

query
This command is used to query all configured cloud providers, and display all instances associated with those ac-
counts. By default, it will run a standard query, returning the following fields:

id The name or ID of the instance, as used by the cloud provider.

image The disk image that was used to create this instance.

private_ips Any public IP addresses currently assigned to this instance.

public_1ips Any private IP addresses currently assigned to this instance.

size The size of the instance; can refer to RAM, CPU(s), disk space, etc., depending on the cloud provider.

state The running state of the instance; for example, running, stopped, pending, etc. This state is dependent
upon the provider.

This command may also be used to perform a full query or a select query, as described below. The following usages
are available:

salt myminion cloud.query
salt myminion cloud.query list_nodes
salt myminion cloud.query list_nodes_full

full_query

This command behaves like the query command, but lists all information concerning each instance as provided by
the cloud provider, in addition to the fields returned by the query command.

salt myminion cloud.full_query

select_query

This command behaves like the query command, but only returned select fields as defined in the
/etc/salt/cloud configuration file. A sample configuration for this section of the file might look like:

query.selection:
- 1id
- key_name

This configuration would only return the id and key_name fields, for those cloud providers that support those two
fields. This would be called using the following command:

salt myminion cloud.select_query

profile

This command is used to create an instance using a profile that is configured on the target minion. Please note that
the profile must be configured before this command can be used with it.

salt myminion cloud.profile ec2-centos64-x64 my-new-instance

Please note that the execution module does not run in parallel mode. Using multiple minions to create instances can
effectively perform parallel instance creation.

412 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

create

This command is similar to the profile command, in that it is used to create a new instance. However, it does not
require a profile to be pre-configured. Instead, all of the options that are normally configured in a profile are passed
directly to Salt Cloud to create the instance:

salt myminion cloud.create my-ec2-config my-new-instance \
image=ami-1624987f size='tl.micro' ssh_username=ec2-user \
securitygroup=default delvol_on_destroy=True

Please note that the execution module does not run in parallel mode. Using multiple minions to create instances can
effectively perform parallel instance creation.

destroy

This command is used to destroy an instance or instances. This command will search all configured providers and
remove any instance(s) which matches the name(s) passed in here. The results of this command are non-reversable
and should be used with caution.

salt myminion cloud.destroy myinstance
salt myminion cloud.destroy myinstancel,myinstance2

action

This command implements both the action and the function commands used in the standard salt-cloud
command. If one of the standard action commands is used, an instance name must be provided. If one of the
standard function commands is used, a provider configuration must be named.

salt myminion cloud.action start instance=myinstance
salt myminion cloud.action show_image provider=my-ec2-config \
image=ami-1624987f

The actions available are largely dependent upon the module for the specific cloud provider. The following actions
are available for all cloud providers:

list_nodes This is a direct call to the query function as described above, but is only performed against a single
cloud provider. A provider configuration must be included.

list_nodes_select Thisisadirect call to the full_query function as described above, but is only performed
against a single cloud provider. A provider configuration must be included.

list_nodes_select This is a direct call to the select_query function as described above, but is only per-
formed against a single cloud provider. A provider configuration must be included.

show_instance This is a thin wrapper around 1ist_nodes, which returns the full information about a single
instance. An instance name must be provided.

State Module

A subset of the execution module is available through the cloud state module. Not all functions are currently
included, because there is currently insufficient code for them to perform statefully. For example, a command to
create an instance may be issued with a series of options, but those options cannot currently be statefully managed.
Additional states to manage these options will be released at a later time.

25.11. Using Salt Cloud from Salt 413

Salt Documentation, Release 2015.8.8

cloud.present

This state will ensure that an instance is present inside a particular cloud provider. Any option that is normally
specified in the cloud . create execution module and function may be declared here, but only the actual presence
of the instance will be managed statefully.

my-instance-name:
cloud.present:

- provider: my-ec2-config
- image: ami-1624987f
- size: '"tl.micro'
- ssh_username: ec2-user
- securitygroup: default
- delvol_on_destroy: True

cloud.profile

This state will ensure that an instance is present inside a particular cloud provider. This function calls the
cloud.profile execution module and function, but as with cloud. present, only the actual presence of the
instance will be managed statefully.

my-instance-name:
cloud.profile:
- profile: ec2-centos64-x64

cloud.absent

This state will ensure that an instance (identified by name) does not exist in any of the cloud providers configured
on the target minion. Please note that this state is non-reversable and may be considered especially destructive when
issued as a cloud state.

my-instance-name:
cloud.absent

Runner Module
The cloud runner module is executed on the master, and performs actions using the configuration and Salt modules
on the master itself. This means that any public minion keys will also be properly accepted by the master.

Using the functions in the runner module is no different than using those in the execution module, outside of the
behavior described in the above paragraph. The following functions are available inside the runner:

« list_images
« list_sizes

« list_locations
+ query

« full_query

« select_query
« profile

« destroy

414 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

« action

Outside of the standard usage of salt-run itself, commands are executed as usual:

salt-run cloud.profile ec2-centos64-x86_64 my-instance-name

CloudClient

The execution, state, and runner modules ultimately all use the CloudClient library that ships with Salt. To use the
CloudClient library locally (either on the master or a minion), create a client object and issue a command against it:

import salt.cloud

import pprint

client = salt.cloud.CloudClient('/etc/salt/cloud")
nodes = client.query()

pprint.pprint(nodes)

Reactor

Examples of using the reactor with Salt Cloud are available in the ec2-autoscale-reactor and salt-cloud-reactor for-
mulas.

25.12 Feature Comparison

25.12.1 Feature Matrix

A number of features are available in most cloud hosts, but not all are available everywhere. This may be because
the feature isn't supported by the cloud host itself, or it may only be that the feature has not yet been added to Salt
Cloud. In a handful of cases, it is because the feature does not make sense for a particular cloud provider (Saltify, for
instance).

This matrix shows which features are available in which cloud hosts, as far as Salt Cloud is concerned. This is not
a comprehensive list of all features available in all cloud hosts, and should not be used to make business decisions
concerning choosing a cloud host. In most cases, adding support for a feature to Salt Cloud requires only a little
effort.

Legacy Drivers

Both AWS and Rackspace are listed as “"Legacy". This is because those drivers have been replaced by other drivers,
which are generally the preferred method for working with those hosts.

The EC2 driver should be used instead of the AWS driver, when possible. The OpenStack driver should be used
instead of the Rackspace driver, unless the user is dealing with instances in " "the old cloud" in Rackspace.

Note for Developers

When adding new features to a particular cloud host, please make sure to add the feature to this table. Additionally,
if you notice a feature that is not properly listed here, pull requests to fix them is appreciated.

25.12. Feature Comparison 415

https://github.com/saltstack-formulas/ec2-autoscale-reactor
https://github.com/saltstack-formulas/salt-cloud-reactor

Salt Documentation, Release 2015.8.8

Standard Features

These are features that are available for almost every cloud host.

AWS | Cloudt Digi- | EC2 GoGrigbyEntin-| Openq Par-| Rackspace SaltifySoft-| Soft- Aliyun
(Legacy) Stack | tal ode | Stack| al- | (Legacy) layer| layer
Ocean lels Hard-
ware
Query | Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
Full Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
Query
Selec- | Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
tive
Query
List Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
Sizes
List Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
Im-
ages
List Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
Loca-
tions
create | Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes | Yes Yes
de- Yes Yes Yes Yes| Yes | Yes | Yes | Yes Yes | Yes Yes | Yes Yes
stroy
Actions

These are features that are performed on a specific instance, and require an instance name to be passed in. For

example:

salt-cloud -a attach_volume ami.example.com

416

Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Actions AWS | Cloud- Digi- | EC2 GoGritbyEntin-| Opent Par-| Rackspade Saltifysoft-| Soft- Aliyun
(Legacy)Stack | tal ode| Stack| al- | (Legacy) layer| layer
Ocean lels Hard-
ware
at- Yes
tach_volume
cre- Yes Yes
ate_attach_|volumes
del tags | Yes Yes
delvol_on_destroy Yes
de- Yes
tach_volume
dis- Yes Yes
able_term_|protect
en- Yes Yes
able_term_|protect
get_tags | Yes Yes
keep- Yes
vol_on_destroy
list_keypairs Yes
rename Yes Yes
set_tags Yes Yes
show_delvol_on_destroy Yes
show_instance Yes Yes Yes Yes Yes | Yes Yes
show_term_protect Yes
start Yes Yes Yes | Yes Yes Yes
stop Yes Yes Yes | Yes Yes Yes
take_action Yes

Functions

These are features that are performed against a specific cloud provider, and require the name of the provider to be
passed in. For example:

salt-cloud -f list_images my_digitalocean

Functions

AWS (Legacy)

CloudStack

Digital Ocean

EC2

GoGrid

JoyEnt

Linode

OpenStack

block_device_mappings

Yes

create_keypair

Yes

create_volume

Yes

delete_key

Yes

delete_keypair

Yes

delete_volume

Yes

get_image

Yes

Yes

get_ip

Yes

get_key

Yes

get_keyid

Yes

get_keypair

Yes

get_networkid

Yes

get_node

Yes

get_password

Yes

25.12. Feature Comparison

417

Salt Documentation, Release 2015.8.8

Table 25.1 -- continued from previous page

Functions AWS (Legacy) | CloudStack | Digital Ocean | EC2 | GoGrid | JoyEnt | Linode | OpenStack
get_size Yes Yes

get_spot_config Yes

get_subnetid Yes

iam_profile Yes Yes

import_key Yes

key_list Yes

keyname Yes Yes

list_availability_zones Yes

list_custom_images

list_keys Yes

list_nodes Yes Yes Yes Yes Yes Yes Yes Yes
list nodes_full Yes Yes Yes Yes Yes Yes Yes Yes
list_ nodes_select Yes Yes Yes Yes Yes Yes Yes Yes
list_vlans

rackconnect Yes
reboot Yes Yes

reformat_node Yes

securitygroup Yes Yes

securitygroupid Yes

show_image Yes

show_key Yes

show_keypair Yes Yes

show_volume Yes

25.13 Tutorials

25.13.1 Salt Cloud Quickstart
Salt Cloud is built-in to Salt, and the easiest way to run Salt Cloud is directly from your Salt Master. On most
platforms you can install the salt-cloud package from the same repo that you used to install Salt.

This quickstart walks you through the basic steps of setting up a cloud host and defining some virtual machines to
create.

Note: Salt Cloud has its own process and does not rely on the Salt Master, so it can be installed on a standalone
minion instead of your Salt Master.

Define a Provider

The first step is to add the credentials for your cloud host. Credentials and other settings provided by the cloud host
are stored in provider configuration files. Provider configurations contain the details needed to connect to a cloud
host such as EC2, GCE, Rackspace, etc., and any global options that you want set on your cloud minions (such as the
location of your Salt Master).

On vyour Salt Master, browse to /etc/salt/cloud.providers.d/ and create a file called
<provider>.conf, replacing <provider> with ec2, softlayer, and so on. The name helps you
identify the contents, and is not important as long as the file ends in . conf.

418 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

Next, browse to the Provider specifics and add any required settings for your cloud host to this file. Here is an example
for Amazon EC2:

my-ec2:
driver: ec2
Set the EC2 access credentials (see below)
#
id: 'HIGRYCILJLKIYG'
key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
Make sure this key is owned by root with permissions 0400.
#
private_key: /etc/salt/my_test_key.pem
keyname: my_test_key
securitygroup: default
Optional: Set up the location of the Salt Master
#
minion:
master: saltmaster.example.com

The required configuration varies between cloud hosts so make sure you read the provider specifics.

List Cloud Provider Options

You can now query the cloud provider you configured for available locations, images, and sizes. This information is
used when you set up VM profiles.

salt-cloud --list-locations <provider_name> # my-ec2 in the previous example
salt-cloud --list-images <provider_name>
salt-cloud --list-sizes <provider_name>

Replace <provider_name> with the name of the provider configuration you defined.

Create VM Profiles

On your Salt Master, browse to /etc/salt/cloud.profiles.d/ and create a file called <profile>.conf,
replacing <profile> with ec2, softlayer, and so on. The file must end in . conf.

You can now add any custom profiles you'd like to define to this file. Here are a few examples:

micro_ec2:
provider: my-ec2
image: ami-d514f291
size: tl.micro

medium_ec2:
provider: my-ec2
image: ami-d514f291
size: m3.medium

large_ec2:
provider: my-ec2
image: ami-d514f291
size: m3.large

Notice that the prov-ider in our profile matches the provider name that we defined? That is how Salt Cloud knows
how to connect to to a cloud host to create a VM with these attributes.

25.13. Tutorials 419

Salt Documentation, Release 2015.8.8

Create VMs

VMs are created by calling salt-cloud with the following options:

’salt—cloud -p <profile> <namel> <name2>

For example:

’salt—cloud -p micro_ec2 minionl minion2

Destroy VMs

Add a —d and the minion name you provided to destroy:

’salt—cloud -d minionl minion2

Query VMs

You can view details about the VMs you've created using ——query:

‘ salt-cloud --query

Cloud Map
Now that you know how to create and destoy individual VMs, next you should learn how to use a cloud map to
create a number of VMs at once.

Cloud maps let you define a map of your infrastructure and quickly provision any number of VMs. On subsequent
runs, any VMs that do not exist are created, and VMs that are already configured are left unmodified.

See Cloud Map File.

25.13.2 Using Salt Cloud with the Event Reactor

One of the most powerful features of the Salt framework is the Event Reactor. As the Reactor was in development,
Salt Cloud was regularly updated to take advantage of the Reactor upon completion. As such, various aspects of
both the creation and destruction of instances with Salt Cloud fire events to the Salt Master, which can be used by
the Event Reactor.

Event Structure

As of this writing, all events in Salt Cloud have a tag, which includes the ID of the instance being managed, and a
payload which describes the task that is currently being handled. A Salt Cloud tag looks like:

’ salt/cloud/<minion_id>/<task>

For instance, the first event fired when creating an instance named web1 would look like:

‘ salt/cloud/webl/creating

Assuming this instance is using the ec2-centos profile, which is in turn using the ec2-config provider, the
payload for this tag would look like:

420 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

{'name': 'webl',
'profile': 'ec2-centos',
"provider': 'ec2-config:ec2'}

Available Events

When an instance is created in Salt Cloud, whether by map, profile, or directly through an API, a minimum of five
events are normally fired. More may be available, depending upon the cloud provider being used. Some of the
common events are described below.

salt/cloud/<minion_id>/creating

This event states simply that the process to create an instance has begun. At this point in time, no actual work has
begun. The payload for this event includes:

name profile provider

salt/cloud/<minion_id>/requesting

Salt Cloud is about to make a request to the cloud provider to create an instance. At this point, all of the variables
required to make the request have been gathered, and the payload of the event will reflect those variables which
do not normally pose a security risk. What is returned here is dependent upon the cloud provider. Some common
variables are:

name image size location

salt/cloud/<minion_id>/querying

The instance has been successfully requested, but the necessary information to log into the instance (such as IP
address) is not yet available. This event marks the beginning of the process to wait for this information.

The payload for this event normally only includes the instance_id.

salt/cloud/<minion_id>/waiting_for_ssh

The information required to log into the instance has been retrieved, but the instance is not necessarily ready to
be accessed. Following this event, Salt Cloud will wait for the IP address to respond to a ping, then wait for the
specified port (usually 22) to respond to a connection, and on Linux systems, for SSH to become available. Salt
Cloud will attempt to issue the date command on the remote system, as a means to check for availability. If no
ssh_username has been specified, a list of usernames (starting with root) will be attempted. If one or more
usernames was configured for ssh_username, they will be added to the beginning of the list, in order.

The payload for this event normally only includes the ip_address.

salt/cloud/<minion_id>/deploying

The necessary port has been detected as available, and now Salt Cloud can log into the instance, upload any files
used for deployment, and run the deploy script. Once the script has completed, Salt Cloud will log back into the
instance and remove any remaining files.

25.13. Tutorials 421

Salt Documentation, Release 2015.8.8

A number of variables are used to deploy instances, and the majority of these will be available in the payload.
Any keys, passwords or other sensitive data will be scraped from the payload. Most of the variables returned will
be related to the profile or provider config, and any default values that could have been changed in the profile or
provider, but weren't.

salt/cloud/<minion_id>/created

The deploy sequence has completed, and the instance is now available, Salted, and ready for use. This event is the
final task for Salt Cloud, before returning instance information to the user and exiting.

The payload for this event contains little more than the initial creating event. This event is required in all cloud
providers.

Configuring the Event Reactor

The Event Reactor is built into the Salt Master process, and as such is configured via the master configuration file.
Normally this will be a YAML file located at /etc/salt/master. Additionally, master configuration items can
be stored, in YAML format, inside the /etc/salt/master.d/ directory.

These configuration items may be stored in either location; however, they may only be stored in one location. For
organizational and security purposes, it may be best to create a single configuration file, which contains only Event
Reactor configuration, at /etc/salt/master.d/reactor.

The Event Reactor uses a top-level configuration item called reactor. This block contains a list of tags to be
watched for, each of which also includes a list of s1s files. For instance:

reactor:
- 'salt/minion/x/start':
- '/srv/reactor/custom-reactor.sls'
- 'salt/cloud/*/created':
- '/srv/reactor/cloud-alert.sls'
- 'salt/cloud/x/destroyed':
- '"/srv/reactor/cloud-destroy-alert.sls'

The above configuration configures reactors for three different tags: one which is fired when a minion process has
started and is available to receive commands, one which is fired when a cloud instance has been created, and one
which is fired when a cloud instance is destroyed.

Note that each tag contains a wildcard (*) in it. For each of these tags, this will normally refer to a minion_1id.
This is not required of event tags, but is very common.

Reactor SLS Files

Reactor ss files should be placed in the /srv/reactor/ directory for consistency between environments, but
this is not currently enforced by Salt.

Reactor ss files follow a similar format to other s1s files in Salt. By default they are written in YAML and can be
templated using Jinja, but since they are processed through Salt's rendering system, any available renderer (JSON,
Mako, Cheetah, etc.) can be used.

As with other s's files, each stanza will start with a declaration ID, followed by the function to run, and then any
arguments for that function. For example:

/srv/reactor/cloud-alert.sls
new_instance_alert:
cmd.pagerduty.create_event:

422 Chapter 25. Salt Cloud

Salt Documentation, Release 2015.8.8

- tgt: alertserver
- kwarg:
description: "New 1instance: {{ data['name'] }}"
details: "New cloud instance created on {{ data['provider'] }}"
service_key: 1626dead5ecafe46231e968eblbe29c4
profile: my-pagerduty-account

When the Event Reactor receives an event notifying it that a new instance has been created, this s1s will create a
new incident in PagerDuty, using the configured PagerDuty account.

The declaration ID in this example is new_instance_alert. The function called is
cmd.pagerduty.create_event. The cmd portion of this function specifies that an execution module
and function will be called, in this case, the pagerduty.create_event function.

Because an execution module is specified, a target (tgt) must be specified on which to call the function. In this case,
a minion called alertserver has been used. Any arguments passed through to the function are declared in the
kwarg block.

Example: Reactor-Based Highstate

When Salt Cloud creates an instance, by default it will install the Salt Minion onto the instance, along with any
specified minion configuration, and automatically accept that minion's keys on the master. One of the configuration
options that can be specified is startup_states, which is commonly set to highstate. This will tell the minion
to immediately apply a highstate, as soon as it is able to do so.

This can present a problem with some system images on some cloud hosts. For instance, Salt Cloud can be configured
to log in as either the root user, or a user with sudo access. While some hosts commonly use images that lock
out remote root access and require a user with sudo privileges to log in (notably EC2, with their ec2-user
login), most cloud hosts fall back to root as the default login on all images, including for operating systems (such
as Ubuntu) which normally disallow remote root login.

For users of these operating systems, it is understandable that a highstate would include configuration to block
remote root logins again. However, Salt Cloud may not have finished cleaning up its deployment files by the time
the minion process has started, and kicked off a highstate run. Users have reported errors from Salt Cloud getting
locked out while trying to clean up after itself.

The goal of a startup state may be achieved using the Event Reactor. Because a minion fires an event when it is able
to receive commands, this event can effectively be used inside the reactor system instead. The following will point
the reactor system to the right s1s file:

reactor:
- 'salt/cloud/*/created':
- '/srv/reactor/startup_highstate.sls'

And the following s'ls file will start a highstate run on the target minion:

/srv/reactor/startup_highstate.sls
reactor_highstate:
cmd.state.apply:
- tgt: {{ data['name'] }}

Because this event will not be fired until Salt Cloud has cleaned up after itself, the highstate run will not step
on salt-cloud's toes. And because every file on the minion is configurable, including /etc/salt/minion, the
startup_states can still be configured for future minion restarts, if desired.

25.13. Tutorials 423

Salt Documentation, Release 2015.8.8

424 Chapter 25. Salt Cloud

CHAPTER 26

netapi modules

26.1 Writing netapi modules

netapi modules, put simply, bind a port and start a service. They are purposefully open-ended and can be used to
present a variety of external interfaces to Salt, and even present multiple interfaces at once.

See also:

The full list of netapi modules

26.1.1 Configuration

All netapi configuration is done in the Salt master config and takes a form similar to the following:

rest_cherrypy:
port: 8000
debug: True
ssl_crt: /etc/pki/tls/certs/localhost.crt
ssl_key: /etc/pki/tls/certs/localhost.key

26.1.2 The __virtual__ function

Like all module types in Salt, netapi modules go through Salt's loader interface to determine if they should be
loaded into memory and then executed.

The __virtual__ function in the module makes this determination and should return False or a string that will
serve as the name of the module. If the module raises an ImportError or any other errors, it will not be loaded.

26.1.3 The start function

The start () function will be called for each netapi module that is loaded. This function should contain the
server loop that actually starts the service. This is started in a multiprocess.

26.1.4 Inline documentation

As with the rest of Salt, it is a best-practice to include liberal inline documentation in the form of a module docstring
and docstrings on any classes, methods, and functions in your netapi module.

425

Salt Documentation, Release 2015.8.8

26.1.5 Loader “magic” methods

The loader makes the __opts__ data structure available to any function in a netapi module.

26.2 Introduction to netapi modules

netapi modules provide API-centric access to Salt. Usually externally-facing services such as REST or WebSockets,
XMPP, XMLRPC, etc.

In general netapi modules bind to a port and start a service. They are purposefully open-ended. A single module can
be configured to run as well as multiple modules simultaneously.

netapi modules are enabled by adding configuration to your Salt Master config file and then starting the salt—-api
daemon. Check the docs for each module to see external requirements and configuration settings.

Communication with Salt and Salt satellite projects is done using Salt's own Python API. A list of available client
interfaces is below.

salt-api

Prior to Salt's 2014.7.0 release, netapi modules lived in the separate sister projected salt—api. That project has
been merged into the main Salt project.

See also:

The full list of netapi modules

26.3 Client interfaces

Salt's client interfaces expose executing functions by crafting a dictionary of values that are mapped to function
arguments. This allows calling functions simply by creating a data structure. (And this is exactly how much of Salt's
own internals work!)

class salt.netapi.NetapiClient (opts)
Provide a uniform method of accessing the various client interfaces in Salt in the form of low-data data struc-
tures. For example:

>>> client = NetapiClient(__opts__)
>>> lowstate = {'client': 'local', 'tgt': 'x', 'fun': 'test.ping', 'arg': ''}
>>> client.run(lowstate)

local(“args, ““kwargs)
Run execution modules synchronously

See salt.client.LocalClient.cmd () for all available parameters.

Sends a command from the master to the targeted minions. This is the same interface that Salt's own CLI
uses. Note the arg and kwar g parameters are sent down to the minion(s) and the given function, fun,
is called with those parameters.

Returns Returns the result from the execution module

local_async (“args, “*kwargs)
Run execution modules asynchronously

Wraps salt.client. LocalClient.run_job().

426 Chapter 26. netapi modules

Salt Documentation, Release 2015.8.8

Returns job ID

local_batch (“args, “*kwargs)
Run execution modules against batches of minions

New in version 0.8.4.
Wraps salt.client.LocalClient.cmd_batch()
Returns Returns the result from the exeuction module for each batch of returns

runner (fun, timeout=None, **kwargs)
Run runner modules <all-salt.runners> synchronously

Wraps salt. runner.RunnerClient.cmd_sync().

Note that runner functions must be called using keyword arguments. Positional arguments are not sup-
ported.

Returns Returns the result from the runner module

runner_async (fun, “*kwargs)
Run runner modules <all-salt.runners> asynchronously

Wraps salt. runner.RunnerClient.cmd_async().

Note that runner functions must be called using keyword arguments. Positional arguments are not sup-
ported.

Returns event data and a job ID for the executed function.

ssh(*args, ““kwargs)
Run salt-ssh commands synchronously

Wraps salt.client.ssh.client.SSHClient.cmd_sync().
Returns Returns the result from the salt-ssh command

ssh_async (fun, timeout=None, **kwargs)
Run salt-ssh commands asynchronously

Wraps salt.client.ssh.client.SSHClient.cmd_async().
Returns Returns the JID to check for results on

wheel (fun, **kwargs)
Run wheel modules synchronously

Wraps salt.wheel.WheelClient.master_call().

Note that wheel functions must be called using keyword arguments. Positional arguments are not sup-
ported.

Returns Returns the result from the wheel module

wheel_async (fun, “*kwargs)
Run wheel modules asynchronou